

A Conceptual Introduction to Machine Learning

Jeffrey M. Girard *University of Kansas*www.jmgirard.com

Overview

Roadmap

- 1. Define concepts and terminology
- 2. Describe typical ML workflow
- 3. Discuss ML usage in psychology

Introduction

- Machine learning is a branch of computer science that develops algorithms that learn from data
- Algorithms are tasked with finding connections and patterns in data
- It has similar goals to but different values and norms than statistics

Types of Modeling

Inference

- Draw conclusions about the data
- Higher need for model interpretability
- Emphasis on statistical significance
- Is self-control associated with truancy?
- Which dosages of a drug are safe?
- Which personality traits predict the amount of positive emotion shown?

Prediction

- Make predictions on new data
- Higher need for model flexibility
- Emphasis on prediction accuracy
- How likely is a child to become truant?
- What dosage is a patient likely to tolerate?
- How much positive emotion is a person expressing in an image, video, or tweet?

A Tale of Two Traditions

Classical Statistics

- Tend to emphasize inference
- Tend to value model interpretability
- Tend to use top-down assumptions
- Generalized linear modeling
- Linear mixed effects modeling
- Structural equation modeling

Machine Learning

- Tends to emphasize prediction
- Tends to value model flexibility
- Tends to use bottom-up patterns
- Support vector machines
- Decision trees and random forests
- Artificial neural networks

Types of Variable

Labels / Outcomes

• Variables that we want to predict and *won't be available* in novel data (e.g., hard to collect, in the future)

Features / Predictors

• Variables that help predict the labels and *will be available* in novel data (e.g., easy to collect, in the past)

Types of Learning

Supervised Learning

- Algorithm given features and labels and tries to "map" between them
- Can we predict the labels from the values that the features take on?

Unsupervised Learning

- Algorithm is provided features only and looks for patterns within them
- Can we find subgroups/clusters or latent dimensions/embeddings?

Modes of Supervised Learning

Regression

• Predict continuous, numerical values

- How much will a customer spend?
- What GPA will a student achieve?
- How long will a patient be hospitalized?

Classification

• Predict discrete, categorical values

- Is this email spam or non-spam?
- Which candidate will a user vote for?
- Is patient's glucose low, normal, or high?

Modes of Supervised Learning

Classification

Typical Modeling Workflow

Exploratory Analysis Model Development Model Evaluation

Feature Engineering Model Tuning

Exploratory Analysis

Quality Control

- Examine the distributions of variables
- Look for errors, outliers, missing data, etc.

Modeling Inspiration

- Identify relevant features for a label
- Detect highly correlated features
- Determine the "shape" of relationships

Feature Engineering

- Extract features (e.g., from text, images, audio)
- Transform features (e.g., center, normalize, log)
- Re-encode features (e.g., dummy code, one hot)
- Combine features (e.g., ratios, means, interactions)
- Reduce dimensionality (e.g., PCA, EFA, GDA)
- Address missing values (e.g., deletion, imputation)
- Drop features (e.g., redundant, low variance)
- Select features (e.g., wrapper-based, filter-based)

Model Development

- What *type* of model to use?
 - Elastic Net, Random Forest, SVM, MLP?
- What *engine* to use for fitting the model?
 - Which software implementation?
- What *mode* should the model run in?
 - Regression, classification, or ordinal?
- What *formula* should the model fit?
 - Which features and how to combine them?

Support Vector Machines

The Kernel Trick

Decision Trees and Random Forests

Survival of passengers on the Titanic

Artificial Neural Networks

Model Tuning

- Models learn by estimating parameters from data
 - where and how to define the margin in an SVM
 - which leaves and branches to use in a decision tree
 - what weights to use in connecting neurons in an ANN
- Learning is also influenced by hyperparameters
 - which type of kernel to use in a non-linear SVM
 - how many decision trees to include in a random forest
 - how many hidden layers to include in an ANN/MLP
- Hyperparameters often control model flexibility

Model Tuning

- Unlike parameters, hyperparameters cannot be estimated from the data
- Instead, we must "tune" our hyperparameters by trying / comparing them
- **Grid Search** Try all values in a pre-defined set (e.g., spaced evenly through likely range)
- Iterative Search Sequentially discover new combinations based on previous results

Model Evaluation

- How to quantify model performance?
 - Compare Predictions to Labels in Test Set
- Regression Metrics
 - Error-based (RMSE, MAE, Huber loss)
 - Correlation-based (CCC, R^2)
- Classification Metrics
 - Class-based (Acc, Sens, Spec, ϕ , F, J)
 - Probability-based (AUC, log loss, cost)
 - Curve Analysis (ROC, P-R, Gain, Lift)
 - Multiclass (macro, micro, specialized)

Modeling Flexibility

A Technical Definition of Overfitting

A Lay Definition of Overfitting

An Example of Overfitting

An Example of Overfitting

An Example of Overfitting

A "Solution" to Overfitting

Training Set

- Exploratory Analysis
- Feature Engineering
- Model Development
- Model Tuning

Test Set

Model Evaluation

"Oh, East is East, and West is West, and never the twain shall meet"

A "Solution" to Overfitting

Cross-Validation

Cross-Validation

Pitfalls to Avoid / Practical Advice

• Information Leakage Do

Don't use *any* info about test set during training For clustered data, create data partitions by cluster

Biased/Flawed Data

Evaluate your data for systematic bias and noise Test sets should represent the applied population

• Insufficient Data

Modeling complexity often requires lots of data Machine learning isn't appropriate for some samples

• Ignored Uncertainty

Provide prediction intervals in applied settings Compare models using inferential statistics

Magical Thinking

Don't expect machine learning to "fix" research mistakes Attend to research design, sampling, measurement, etc.

Where to Learn More

Free Online Textbook

• Tidy Modeling with R Kuhn & Silge (2021) www.tmwr.org

Online Summer Camp

• Applied Machine Learning in R Girard & Wang (July 19-23, 2021) www.pittmethods.com/applied-ml

