Daniel McDuff, Jeffrey M. Girard
Proceedings of the AAAC Conference on Affective Computing and Intelligent Interaction
Publication year: 2019

The affective computing community has invested heavily in building automated tools for the analysis of facial behavior and the expression of emotion. These tools present a valuable, but largely untapped, opportunity for social scientists to perform observational analyses of nonverbal behavior at very large scale. Various tech companies are collecting huge corpora of images and videos from around the world that could be used to study important scientific questions. However, privacy restrictions and intellectual property concerns render these data inaccessible to most academics. Unfortunately, this limits the potential for scientific advancement and leads to the consolidation of data and opportunity into the hands of a few powerful institutions. In this paper, we ask whether similar psychological insights can be gained by analyzing smaller, public datasets that are more within reach for academic researchers. As a proof-of-concept for this idea, we gather, analyze, and release a corpus of public images and metadata and use it to replicate recent psychological findings about smiling, gender, and culture. In so doing, we provide evidence that psychological insights can indeed by democratized through the automated analysis of nonverbal behavior.

One Response to “Democratizing psychological insights from analysis of nonverbal behavior”

  1. Jeffrey Girard

    View this project on the Open Science Framework: https://osf.io/n4grd/

Leave a Reply to Jeffrey Girard Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.