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Both the occurrence and intensity of facial expressions are critical to what the face reveals. While much

progress has been made toward the automatic detection of facial expression occurrence, controversy exists

about how to estimate expression intensity. The most straight-forward approach is to train multiclass or

regression models using intensity ground truth. However, collecting intensity ground truth is even more time

consuming and expensive than collecting binary ground truth. As a shortcut, some researchers have proposed

using the decision values of binary-trained maximum margin classifiers as a proxy for expression intensity. We

provide empirical evidence that this heuristic is flawed in practice as well as in theory. Unfortunately, there are

no shortcuts when it comes to estimating smile intensity: researchers must take the time to collect and train

on intensity ground truth. However, if they do so, high reliability with expert human coders can be achieved.

Intensity-trained multiclass and regression models outperformed binary-trained classifier decision values on

smile intensity estimation across multiple databases and methods for feature extraction and dimensionality

reduction. Multiclass models even outperformed binary-trained classifiers on smile occurrence detection.

© 2014 Elsevier B.V. All rights reserved.
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. Introduction

The face is an important avenue of communication capable of reg-

lating social interaction and providing the careful observer with a

ealth of information. Facial expression analysis has informed psy-

hological studies of emotion [1–3], intention [4,5], physical pain

6,7], and psychopathology [8,9], among other topics. It is also cen-

ral to computer science research on human–computer interaction

10,11] and computer animation [12].

There are two general approaches to classifying facial expression

13]. Message-based approaches seek to identify the meaning of each

xpression; this often takes the form of classifying expressions into

ne or more basic emotions such as happiness and anger [14,15].

his approach involves a great deal of interpretation and fails to ac-

ount for the fact that facial expressions serve a communicative func-

ion [4], can be controlled or dissembled [16], and often depend on

ontext for interpretation [17]. Sign-based approaches, on the other

and, describe changes in the face during an expression rather than

ttempting to capture its meaning. By separating description from

nterpretation, sign-based approaches achieve more objectivity and

omprehensiveness.
✩ This paper has been recommended for acceptance by G. Sanniti di Baja.
∗ Corresponding author. Tel.: +1 412 624 8826; fax: +1 412 624 5407.
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The most commonly used sign-based approach for describing fa-

ial expression is the Facial Action Coding System (FACS) [18], which

ecomposes facial expressions into component parts called action

nits (AU). Action units are anatomically-based and correspond to

he contraction of specific facial muscles. AU may occur alone or in

ombination with others to form complex facial expressions. They

ay also vary in intensity (i.e., magnitude of muscle contraction).

he FACS manual provides coders with detailed descriptions of the

hape and appearance changes necessary to identify each AU and its

ntensity.

Much research using FACS has focused on the occurrence and AU

omposition of different expressions [19]. For example, smiles that

ecruit the orbicularis oculi muscle (i.e., AU 6) are more likely to

ccur during pleasant circumstances [20,21] and smiles that recruit

he buccinator muscle (i.e., AU 14) are more likely to occur during

ctive depression [22,9].

A promising subset of research has begun to focus on what can

e learned about and from the intensity of expressions. This work

as shown that expression intensity is linked to both the intensity of

motional experience and the sociality of the context [2,23,24]. For

xample, Hess et al. [24] found that participants displayed the most

acial expression intensity when experiencing strong emotions in the

ompany of friends. Other studies have used the intensity of facial

xpressions (e.g., in yearbook photos) to predict a number of social

nd health outcomes years later. For example, smile intensity in a

osed photograph has been linked to later life satisfaction, marital
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status (i.e., likelihood of divorce), and even years lived [25–29]. It is

likely that research has only begun to scratch the surface of what

might be learned from expressions’ intensities.

Intensity estimation is also critical to the modeling of an expres-

sion’s temporal dynamics (i.e., changes in intensity over time). Tem-

poral dynamics is a relatively new area of study, but has already

been linked to expression interpretation, person perception, and psy-

chopathology. For example, the speed with which a smile onsets and

offsets has been linked to interpretations of the expression’s mean-

ing and authenticity [30], as well as to ratings of the smiling person’s

attractiveness and personality [31]. Expression dynamics have also

been found to be behavioral markers of depression, schizophrenia,

and obsessive-compulsive disorder [32–34].

Efforts in automatic facial expression analysis have focused pri-

marily on the detection of AU occurrence [3], rather than the es-

timation of AU intensity. In shape-based approaches to automatic

facial expression analysis, intensity dynamics can be measured di-

rectly from the displacement of facial landmarks [35,36]. Shape-based

approaches, however, are especially vulnerable to registration error

[37], which is common in naturalistic settings. Appearance-based ap-

proaches are more robust to registration error, but require additional

steps to estimate intensity. We address the question of how to esti-

mate intensity from appearance features.

In an early and influential work on this topic, Bartlett et al. [38]

applied standard binary expression detection techniques to estimate

expressions’ peak intensity. This and subsequent work [39,40] en-

couraged the use of the margins of binary-trained maximum margin

classifiers as proxies for facial expression intensity. The assumption

underlying this practice is that the classifier’s decision value will be

positively correlated with the expression’s intensity. However, this

assumption is theoretically problematic because nothing in the for-

mulation of a maximum margin classifier guarantees such a correla-

tion [41]. Indeed, many factors other than intensity may affect a data

point’s decision value, such as its typicality in the training set, the

presence of other facial actions, and the recording conditions (e.g., il-

lumination, pose, noise). The decision-value-as-intensity heuristic is

purely an assumption about the data. The current study tests this as-

sumption empirically, and compares it with the more labor-intensive

but theoretically-informed approaches of training multiclass and re-

gression models using intensity ground truth.

1.1. Previous work

Since Bartlett et al. [38], many studies have used classifier deci-

sion values to estimate expression intensity [39–48]. However, only

a few of them have quantitatively evaluated their performance by

comparing their estimations to manual (i.e., “ground truth”) cod-

ing. Several studies [40,45,46] found that decision value and ex-

pression intensity were positively correlated during posed expres-

sions. However, such correlations have typically been lower dur-

ing spontaneous expressions. In a highly relevant study, Whitehill

et al. [45] focused on the estimation of spontaneous smile intensity

and found a high correlation between decision value and smile inten-

sity. However, this was in five short video clips and it is unclear how

the ground truth intensity coding was obtained.

Recent studies have also used methods other than the decision-

value-as-intensity heuristic for intensity estimation, such as regres-

sion [46,49–52] and multiclass classifiers [53–55]. These studies have

found that the predictions of support vector regression models and

multiclass classifiers were highly correlated with expression inten-

sity during both posed and spontaneous expressions. Finally, several

studies [56–58] used extracted features to estimate expression in-

tensity directly. For example, Messinger et al. [58] found that mouth

radius was highly correlated with spontaneous smile intensity in five

video clips.
Very few studies have compared different estimation methods

sing the same data and performance evaluation methods. Savran

t al. [46] found that support vector regression outperformed the

ecision values of binary support vector machine classifiers on the

ntensity estimation of posed expressions. Ka Keung and Yangsheng

49] found that support vector regression outperformed cascading

eural networks on the intensity estimation of posed expressions,

nd Dhall and Goecke [50] found that Gaussian process regression

utperformed both kernel partial least squares and support vector

egression on the intensity estimation of posed expressions. Yang

t al. [41] also compared decision values with an intensity-trained

odel, but used their outputs to rank images by intensity rather than

o estimate intensity.

Much of the previous work has been limited in three ways.

irst, many studies [57,50,49,41] adopted a message-based approach,

hich is problematic for the reasons described earlier. Second, the

ajority of this work [57,50,49,46,41] focused on posed expressions,

hich limits the external validity and generalizability of their find-

ngs. Third, most of these studies were limited in terms of the ground

ruth they compared their estimations to. Some studies [38–40] only

oded expressions’ peak intensities, while others [53,58,54,45] ob-

ained frame-level ground truth, but only for a handful of subjects.

ithout a large amount of expert-coded, frame-level ground truth,

t is impossible to truly gauge the success of an automatic intensity

stimation system.

.2. The current study

The current study challenges the use of binary classifier decision

alues for the estimation of expression intensity. Primarily, we hy-

othesize that intensity-trained (i.e., multiclass and regression) mod-

ls will outperform binary-trained (i.e., two-class) models for expres-

ion intensity estimation. Secondarily, we hypothesize that intensity-

rained models will offer a smaller but significant boon to binary ex-

ression detection over binary-trained models.

We compared these approaches using multiple methods for fea-

ure extraction and dimensionality reduction, using the same data and

he same performance evaluation methods. We also improve upon

revious work by using a sign-based approach, two large datasets

f spontaneous expressions, and expert-coded ground truth. Smiles

ere chosen for this in-depth analysis because they are the most

ommonly occurring facial expression [59], are implicated in affec-

ive displays and social signaling [60,61], and appear in much of the

revious work on both automatic intensity estimation and the psy-

hological exploration of facial expression intensity.

. Methods

.1. Participants and data

In order to increase the sample size and explore the generaliz-

bility of the findings, data were drawn from two separate datasets.

oth datasets recorded and FACS coded participant facial behavior

uring a non-scripted, spontaneous dyadic interaction. They differ in

erms of the context of the interaction, the demographic makeup of

he sample, constraints placed upon data collection (e.g., illumina-

ion, frontality, and head motion), base rates of smiling, tracking, and

nter-observer reliability of manual FACS coding. Because of how its

egments were selected, the BP4D database also had more frequent

nd intense smiles.

.1.1. BP4D database

FACS coded video was available for 30 adults (50% female, 50%

hite, mean age 20.7 years) from the Binghamton–Pittsburgh 4D

BP4D) spontaneous facial expression database [62]. Participants

ere filmed with both a 3D dynamic face capturing system and a 2D
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Fig. 1. Smile (AU 12) intensity levels from no contraction (left) to maximum contraction (right).

Tracking

Live DriverTM by
Image Metrics for

BP4D-SFE database

or

Active Appearance
Models (AAM) for
Spectrum database

Extraction

Gabor Wavelets

or

Scale-Invariant
Feature Transform
(SIFT) Descriptors

Reduction

Laplacian Eigenmap

or

Principal
Components

Analysis (PCA)

Prediction

Two-class SVM

or

Multiclass SVM

or

SVM Regression

Fig. 2. Techniques used for automatic expression annotation.
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rontal camera (520 × 720 pixel resolution) while engaging in eight

asks designed to elicit emotions such as anxiety, surprise, happiness,

mbarrassment, fear, pain, anger, and disgust. Facial behavior from

he 20-s segment with the most frequent and intense facial expres-

ions from each task was coded from the 2D video. The BP4D database

s publicly available.

.1.2. Spectrum database

FACS coded video was available for 33 adults (67.6% female, 88.2%

hite, mean age 41.6 years) from the Spectrum database [8]. The

articipants suffered from major depressive disorder [63] and were

ecorded during clinical interviews to assess symptom severity over

he course of treatment [64]. A total of 69 interviews were recorded

sing four hardware-synchronized analogue cameras. Video from

camera roughly 15◦ to the participant’s right was digitized into

40 × 480 pixel arrays for analysis. Facial behavior during the first

hree interview questions (about depressed mood, feelings of guilt,

nd suicidal ideation) was coded; these segments were an average

f 100 s long. The Spectrum database is not publicly available due to

onfidentiality restrictions.

.2. Manual expression annotation

.2.1. AU occurrence

For both the BP4D and Spectrum databases, participant facial be-

avior was manually FACS coded from video by certified coders. Inter-

bserver agreement – the degree to which coders saw the same AUs

n each frame – was quantified using F1 score [65]. For the BP4D

atabase, 34 commonly occurring AU were coded from onset to offset;

nter-observer agreement for AU 12 occurrence was F1 = 0.96. For the

pectrum database, 17 commonly occurring AU were coded from on-

et to offset, with expression peaks also coded; inter-observer agree-

ent for AU 12 occurrence was F1 = 0.71. For both datasets, onsets

nd offsets were converted to frame-level occurrence (i.e., present or

bsent) codes for AU 12.
.2.2. AU intensity

The manual FACS coding procedures described earlier were used

o identify the temporal location of AU 12 events. Separate video clips

f each event were generated and coded for intensity by certified

oders using custom continuous measurement software. This cod-

ng involved assigning each video frame a label of “no smile” or “A”

hrough “E” representing trace through maximum intensity (Fig. 1)

s defined by the FACS manual [18]. Inter-observer agreement was

uantified using intraclass correlation (ICC) [66]. Ten percent of clips

ere independently coded by a second certified FACS coder; inter-

bserver agreement was ICC = 0.92.

.3. Automatic expression annotation

Smiles were automatically coded for both occurrence and intensity

sing each combination of the techniques listed in Fig. 2 for tracking,

xtraction, reduction, and prediction.

.3.1. Tracking

Facial landmark points indicate the location of important facial

omponents (e.g., eye and lip corners). For the BP4D database, sixty-

our facial landmarks were tracked in each video frame using Live

riverTM from Image Metrics [67]. Overall, 4% of video frames were

ntrackable, mostly due to occlusion or extreme out-of-plane rota-

ion. A global normalizing (i.e., similarity) transformation was applied

o the data for each video frame to remove variation due to rigid head

otion. Finally, each image was cropped to the area surrounding the

etected face and scaled to 128 × 128 pixels.

For the Spectrum database, sixty-six facial landmarks were tracked

sing active appearance models (AAM) [68]. AAM is a powerful ap-

roach that combines the shape and texture variation of an image

nto a single statistical model. Approximately 3% of video frames were

anually annotated for each subject and then used to build the AAMs.

he frames then were automatically aligned using a gradient-descent

AM fitting algorithm [69]. Overall, 9% of frames were untrackable,

gain mostly due to occlusion and rotation. The same normalization
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procedures used on the Live Driver landmarks were also used on the

AAM landmarks. Additionally, because AAM includes landmark points

along the jawline, we were able to remove non-face information from

the images using a convex hull algorithm.

2.3.2. Extraction

Two types of appearance features were extracted from the tracked

and normalized faces. Following previous work on expression detec-

tion [37] and intensity estimation [38,46], Gabor wavelets [70,71]

were extracted in localized regions surrounding each facial landmark

point. Gabor wavelets are biologically-inspired filters, operating in a

similar fashion to simple receptive fields in mammalian visual sys-

tems [72]. They have been found to be robust to misalignment and

changes in illumination [73]. By applying a filter bank of eight ori-

entations and five scales (i.e., 17, 23, 33, 46, 65 pixels) at each local-

ized region, specific changes in facial texture and orientation (which

map onto facial wrinkles, folds, and bulges) were quantified. Scale-

invariant feature transform (SIFT) descriptors [74,75] were also ex-

tracted in localized regions surrounding each facial landmark point.

SIFT descriptors are partially invariant to illumination changes. By

applying a geometric descriptor to each facial landmark, changes in

facial texture and orientation were quantified.

2.3.3. Reduction

Both types of features exhibited high dimensionality, which makes

classification/regression difficult and resource-intensive problems.

Two approaches for dimensionality reduction were compared on their

ability to yield discriminant features for classification. For each model,

only one of these approaches was used. The sample and feature sizes

were motivated by the computational limitations imposed by each

method.

Laplacian Eigenmap [76] is a nonlinear technique used to find the

low dimensional manifold that the original (i.e., high dimensional)

feature data lies upon. Following recent work by Mahoor et al. [53],

supervised Laplacian Eigenmaps were trained on a randomly selected

sample of 2500 frames and used in conjunction with spectral regres-

sion [77]. Two manifolds were trained for the data: one using two

classes (corresponding to FACS occurrence codes) and another using

six classes (corresponding to the FACS intensity codes). The two-class

manifolds were combined with the two-class models and the six-class

manifolds were combined with the multiclass and regression models

(described below). The Gabor and SIFT features were each reduced to

30 dimensions per video frame using this technique.

Principal component analysis (PCA) [78] is a linear technique used

to project a feature vector from a high dimensional space into a low

dimensional space. Unsupervised PCA was used to find the smallest

number of dimensions that accounted for 95% of the variance in a

randomly selected sample of 100,000 frames. This technique reduced

the Gabor features to 162 dimensions per video frame and reduced

the SIFT features to 362 dimensions per video frame.

2.3.4. Prediction

Three techniques for supervised learning were used to predict the

occurrence and intensity of smiles using the reduced features. Two-

class models were trained on the binary FACS occurrence codes, while

multiclass and regression models were trained on the FACS intensity

codes. Data from the two databases were not mixed and contributed

to separate models.

Following previous work on binary expression detection [79,45],

two-class support vector machines (SVM) [80] were used for binary

classification. We used a kernel SVM with a radial basis function ker-

nel in all our approaches. SVMs were trained using two classes cor-

responding to the FACS occurrence codes described earlier. Training

sets were created by randomly sampling 10,000 frames with roughly

equal representation for each class. The choice of sample size was
otivated by the computational limitations imposed by model train-

ng during cross-validation. Classifier and kernel parameters (i.e., C

nd γ , respectively) were optimized using a “grid-search” proce-

ure [81] on a separate validation set. The decision values of the

VM models were fractions corresponding to the distance of each

rame’s high dimensional feature point from the class-separating hy-

erplane. These values were used for smile intensity estimation and

lso discretized using the standard SVM threshold of zero to provide

redictions for binary smile detection (i.e., negative values were la-

eled absence of AU 12 and positive values were labeled presence

f AU 12). Some researchers have proposed converting the SVM de-

ision value to a pseudo-probability using a sigmoid function [82],

ut because the SVM training procedure is not intended to encourage

his, it can result in a poor approximation of the posterior probability

83].

Following previous work on expression intensity estimation using

ulticlass classifiers [53–55], the SVM framework was extended for

ulticlass classification using the “one-against-one” technique [84].

n this technique, if k is the number of classes, then k(k − 1)/2 sub-

lassifiers are constructed and each one trains data from two classes;

lassification is then resolved using a subclassifier voting strategy.

ulticlass SVMs were trained using six classes corresponding to the

ACS intensity codes described earlier. Training sets were created

y randomly sampling 10,000 frames with roughly equal represen-

ation for each class. Classifier and kernel parameters (i.e., C and γ ,

espectively) were optimized using a “grid-search” procedure [81] on

separate validation set. The output values of the multiclass clas-

ifiers were integers corresponding to each frame’s estimated smile

ntensity level. These values were used for smile intensity estimation

nd also discretized to provide predictions for binary smile detection

i.e., values of 0 were labeled absence of AU 12 and values of 1 through

were labeled presence of AU 12).

Following previous work on expression intensity estimation us-

ng regression [46,49–52], epsilon support vector regression (ε-SVR)

80] was used. As others have noted [46], ε-SVR is appropriate to ex-

ression intensity estimation because its ε-insensitive loss function

s robust and generates a smooth mapping. ε-SVRs were trained us-

ng a metric derived from the FACS intensity codes described earlier.

he intensity scores of “A” through “E” were assigned a discrete nu-

erical value from 1 to 5, with “no smile” assigned the value of 0.

lthough this mapping deviates from the non-metric definition of AU

ntensity in the FACS manual, wherein the range of some intensity

cores is larger than others, it enables us to provide a more efficient

omputational model that works well in practice. Training sets were

reated by randomly sampling 10,000 frames with roughly equal rep-

esentation for each class. Model and kernel parameters (i.e., C and γ ,

espectively) were optimized using a “grid-search” procedure [81];

he epsilon parameter was left at the default value (ε = 0.1). The out-

ut values of the regression models were fractions corresponding to

ach frame’s estimated smile intensity level. This output was used for

mile intensity estimation and also discretized using a threshold of

.5 (so that low numbers rounded down) to provide predictions for

inary smile detection.

It is important to note the differences between the three ap-

roaches that were tested. In the two-class approach, the five in-

ensity levels of a given AU were collapsed into a single positive class.

n the multiclass approach, each of the intensity levels was treated

s a mutually-exclusive but unrelated class. Finally, in the regres-

ion approach, each intensity level was assigned a discrete numerical

alue and modeled on a continuous dimension. These differences are

larified by examination of the respective loss functions. The penalty

f incorrect estimation in the regression approach is based on the

istance between the prediction value y and the ground truth label

, given a buffer area of size ε (Eq. (1)). In contrast, the penalty of

isclassification in the two-class approach is based on the classi-

er’s decision value y (Eq. (2)). In this case, the ground truth label is
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Table 1

General linear model results for smile intensity estimation.

ICC F p

Database

BP4D 0.765 158.206 0.00

Spectrum 0.521

Extraction

Gabor 0.602 17.892 0.00

SIFT 0.684

Reduction

Laplacian 0.639 0.197 0.66

PCA 0.648

Prediction

Two-class 0.467a 83.360 0.00

Multiclass 0.739b

Regression 0.724b

Interaction effects

Database × extraction 4.627 0.03

Database × reduction 3.958 0.05

Database × model 8.873 0.00

Reduction × model 13.391 0.00

Different superscripts indicate significant mean differences in ICC or F1 score

by Tukey HSK test (p < .05).
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ollapsed into present at any intensity level (t = 1) or absent (t = −1).

s an extension of the two-class approach, similar phenomena occur

or the multiclass approach.

ε(y) =
{

0 if |y − t| < ε
|y − t| − ε otherwise.

(1)

(y) =
{

0 if (1 − y · t) < 0
1 − y · t otherwise

(2)

.3.5. Cross-validation

To prevent model over-fitting, stratified k-fold cross-validation

85] was used. Cross-validation procedures typically involve parti-

ioning the data and iterating through the partitions such that all the

ata is used but no iteration is trained and tested on the same data.

tratified cross-validation procedures ensure that the resultant par-

itions have roughly equal distributions of the target class (in this

ase AU 12). This property is desirable because many performance

etrics are highly sensitive to class skew [86]. By using the same

artitions across methods, the randomness introduced by repeated

epartitioning can also be avoided.

Each video segment was assigned to one of five partitions. Seg-

ents, rather than participants, were assigned to partitions to allow

reater flexibility for stratification. However, this choice allowed in-

ependent segments from the same participant to end up in multiple

artitions. As such, this procedure was a less conservative control for

eneralizability. For each iteration of the cross-validation procedure,

hree partitions were used for training, one partition was used for

alidation (i.e., optimization), and one partition was used for testing.

.4. Performance evaluation

The majority of previous work on expression intensity estima-

ion has utilized the Pearson product–moment correlation coefficient

PCC) to measure the correlation between intensity estimations and

round truth coding. PCC is invariant to linear transformations, which

s useful when using estimations that differ in scale and location

rom the ground truth coding (e.g., decision values). However, this

ame property is problematic when the estimations are similar to the

round truth (e.g., multiclass classifier predictions), as it introduces

n undesired handicap. For instance, a classifier that always estimates

n expression to be two intensity levels stronger than it is will have

he same PCC as a classifier that always estimates the expression’s

ntensity level correctly.

For this reason, we performed our analyses using another perfor-

ance metric that grants more control over its relation to linear trans-

ormations: the intraclass correlation coefficient (ICC) [66]. Eq. (3)

as used to compare the multiclass SVM and ε-SVR approaches to

he manual intensity annotations as their outputs were consistently

caled; it was calculated using between-target mean squares (BMS)

nd within-target mean squares (WMS). Eq. (4) was used for the de-

ision value estimations because it takes into account differences in

cale and location; it was calculated using BMS and residual sum of

quares (EMS). For both formulas, k is equal to the number of cod-

ng sources being compared; in the current study, there are two: the

utomatic and manual codes. ICC ranges from −1 to +1, with more

ositive values representing higher agreement.

CC(1, 1) = BMS − WMS

BMS + (k − 1)WMS
(3)

CC(3, 1) = BMS − EMS

BMS + (k − 1)EMS
(4)

The majority of previous work on binary expression detection has

tilized receiver operating characteristic (ROC)analysis. When certain
ssumptions are met, the area under the curve (AUC) is equal to the

robability that the classifier will rank a randomly chosen positive in-

tance higher than a randomly chosen negative instance [87]. The fact

hat AUC captures information about the entire distribution of deci-

ion points is a benefit of the measure, as it removes the subjectivity

f threshold selection. However, in the case of automatic expression

nnotation, a threshold must be chosen in order to create predictions

hat can be compared with ground truth coding. In light of this issue,

e performed our analyses using a threshold-specific performance

etric: the F1 score, which is the harmonic mean of precision and

ecall (Eq. (5)) [65]. F1 score is computed using true positives (TP),

alse positives (FP), and false negatives (FN); it ranges from 0 to 1,

ith higher values representing higher agreement between coders.

1 = 2 × TP

2 × TP + FN + FP
(5)

.5. Data analysis

Main effects and interaction effects among the different methods

ere analyzed using two univariate general linear models [88] (one

or binary smile detection and one for smile intensity estimation). F1

nd ICC were entered as the sole dependent variable in each model,

nd database, extraction type, reduction type, and classification type

ere entered as “fixed factor” independent variables. The direction

f significant differences was explored using marginal means for all

ariables except for classification type. In this case, post-hoc Tukey

SD tests [88] were used to explore differences between the three

ypes of classification.

. Results

.1. Smile intensity estimation

Across all methods and databases, the average intensity estimation

erformance was ICC = 0.64. However, performance varied widely

etween databases and methods, from a low of ICC = 0.23 to a high

f ICC = 0.92.

The overall general linear model for smile intensity estimation was

ignificant (Table 1). Main effects of database, extraction method, and

upervised learning method were apparent. Intensity estimation per-

ormance was significantly higher for the BP4D database than for the

pectrum database, and intensity estimation performance using SIFT

eatures was significantly higher than that using Gabor features. In-

ensity estimation performance using multiclass and regression mod-

ls was significantly higher than that using the two-class approach.
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Table 2

General linear model results for binary smile detection.

F1 score F p

Database

BP4D 0.772 440.209 0.00

Spectrum 0.504

Extraction

Gabor 0.618 9.740 0.00

SIFT 0.658

Reduction

Laplacian 0.642 0.501 0.48

PCA 0.633

Prediction

Two-class 0.616a 4.175 0.02

Multiclass 0.661b

Regression 0.636

Interaction effects

Reduction × model 5.753 0.00

Different superscripts indicate significant mean differences

in ICC or F1 score by Tukey HSK test (p < .05).
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There was no significant difference in performance between Laplacian

Eigenmap and PCA for reduction.

These main effects were qualified by four significant interaction

effects. First, the difference between SIFT features and Gabor features

was greater in the Spectrum database than in the BP4D database.

Second, while Laplacian Eigenmap performed better in the Spectrum

database, PCA performed better in the BP4D database. Third, while

multiclass models performed better in the Spectrum database, regres-

sion models performed better in the BP4D database. Fourth, PCA re-

duction yielded higher intensity estimation performance when com-

bined with two-class models, but lower performance when combined

with multiclass and regression models.

3.2. Binary smile detection

Across all methods and databases, the average binary detection

performance was F1 = 0.64. However, performance varied between

databases and methods, from a low of F1 = 0.40 to a high of F1 = 0.81.

The overall general linear model for binary smile detection was

significant (Table 2). Main effects of database, extraction method, and

supervised learning method were apparent. Detection performance

on the BP4D database was significantly higher than that on the Spec-

trum database, and detection performance using SIFT features was

significantly higher than that using Gabor features. Detection perfor-

mance was significantly higher using multiclass models than using

two-class models.

These main effects were qualified by a significant interaction effect

between reduction method and supervised learning method. PCA re-

duction yielded higher detection performance when combined with

two-class models, but lower detection performance when combined

with multiclass and regression models. There was no main effect of

dimensionality reduction method and no other interactions were sig-

nificant.

3.3. Distribution of output values

The decision values of the best-performing two-class model for

each database are presented in Fig. 4 as box plots [89]. The boxes rep-

resent the first and third quartiles of each smile intensity level, while

the line within each box represents the median. The lines extend-

ing from each box represent data within 1.5 times the inter-quartile

range of the lower and upper quartiles. The regression values of the

best-performing regression model for each database are similarly pre-

sented in Fig. 5.

Examination of Fig. 4 reveals a slight right-leaning tendency, in-

dicating that more positive SVM decision values are on average more

likely to be higher intensity. However, there is substantial overlap
etween the distributions and a great deal of “clumping” between in-

ensity levels; the distributions for levels 2 through 4 (i.e., “B” through

D”) are very similar for the BP4D dataset, while the distributions for

evels 3 through 5 (i.e., “C” through “E”) are very similar for the Spec-

rum dataset. Finally, the observed range of values spans −3.6 to 5.5

or BP4D and −8.4 to 8.1 for Spectrum.

Examination of Fig. 5 reveals a stepped and right-leaning pat-

ern, indicating that more positive regression values are on average

ore likely to be higher intensity. There is some overlapping be-

ween the distributions, although the inter-quartile ranges for each

roup are largely distinct. One exception to this is clumping for levels

and 5 (i.e., “D” and “E”), especially for the Spectrum dataset. The ob-

erved range of values spans −3.1 to 5.7 for BP4D and −1.2 to 4.8 for

pectrum.

. Discussion

.1. Smile intensity estimation

Intensity estimation performance varied between databases, fea-

ure extraction methods, and supervised learning methods. Per-

ormance was higher in the BP4D database than in the Spectrum

atabase. It is not surprising that performance differed between the

wo databases, given how much they differed in terms of participant

emographics, social context, and image quality. Further experimen-

ation will be required to pinpoint exactly what differences between

he databases contributed to this drop in performance, but we sus-

ect that illumination conditions, frontality of camera placement, and

articipant head pose were involved. It is also possible that the par-

icipants in the Spectrum database were more difficult to analyze

ue to their depressive symptoms. Previous research has found that

onverbal behavior (and especially smiling) changes with depres-

ion symptomatology (e.g., [90]). There were also differences between

atabases in terms of social context that likely influenced smiling be-

avior; Spectrum was recorded during a clinical interview about de-

ression symptoms, while BP4D was recorded during tasks designed

o elicit specific and varied emotions. Participants in the Spectrum

atabase smiled less frequently (20.5% of frames) and less intensely

average intensity 1.5) than did participants in the BP4D database

56.4% of frames and average intensity 2.4). The inter-observer re-

iability for manual smile occurrence coding was also higher in the

P4D database (F1 = 0.96) than in the Spectrum database (F1 = 0.71).

hese differences may have affected the difficulty of smile intensity

stimation.

More surprising was that intensity estimation performance was

igher for SIFT features than for Gabor features. This finding is encour-

ging from a computational load perspective, considering the toolbox

mplementation of SIFT used in this study [75] was many times faster

han our custom implementation of Gabor. However, it is possible

hat SIFT was particularly well-suited to our form of registration with

ense facial landmarking. Although we did not test this hypothesis in

he current study, it would have been interesting to compare these

wo methods of feature extraction in conjunction with a method of

egistration using sparse landmarking (e.g., holistic face detection or

ye tracking). It is also important to note that the difference between

IFT and Gabor features was larger in the Spectrum database than in

P4D.

For dimensionality reduction, intensity estimation performance

as not significantly different between Laplacian Eigenmap and PCA.

his may be an indication that the features used in this study were

inearly separable and that manifold learning was unnecessary. This

nding is also encouraging from a computational load perspective,

s PCA is a much faster and simpler technique. However, it is im-

ortant to note that the success of each dimensionality reduction

echnique depended on the database and on the classification method

sed. Laplacian Eigenmap was better suited to the Spectrum database,
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Fig. 3. Average performance for three approaches to supervised learning in two databases.

−4 −2 0 2 4

0

1

2

3

4

5

SVM Decision Value

A
U

12
In

te
ns

it
y

BP4D-Spontaneous Database

−6 −4 −2 0 2 4 6 8 10

0

1

2

3

4

5

SVM Decision Value

A
U

12
In

te
ns

it
y

Spectrum Database

Fig. 4. SVM decision values by AU 12 intensity in two databases.

−2 0 2 4 6

0

1

2

3

4

5

SVM Regression Value

A
U

12
In

te
ns

it
y

BP4D-Spontaneous Database

−2 0 2 4 6

0

1

2

3

4

5

SVM Regression Value

A
U

12
In

te
ns

it
y

Spectrum Database

Fig. 5. SVM regression values by AU 12 intensity in two databases.

m

s

g

t

t

s

u

t

m

c

i

4

t

d

ulticlass models, and regression models; while PCA was better

uited to the BP4D database and two-class models.

Most relevant to our main hypothesis are the findings re-

arding supervised learning method. In line with our hypothesis

hat the decision-value-as-intensity heuristic is flawed in practice,

he intensity-trained multiclass and regression models performed

ignificantly better at intensity estimation than the decision val-

es of two-class models. However, it is important to note that

he intensity estimation performance yielded by binary-trained
odels was not negligible. Consistent with previous reports, de-

ision values showed a low to moderate correlation with smile

ntensity.

.2. Binary smile detection

Binary detection performance also varied between databases, fea-

ure extraction methods, and supervised learning methods. These

ifferences were very similar to those for expression intensity



20 J.M. Girard et al. / Pattern Recognition Letters 66 (2015) 13–21

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

estimation. Binary detection performance was higher for the BP4D

database than for the Spectrum database, higher for SIFT features

than for Gabor features, and no difference between Laplacian Eigen-

map and PCA for reduction.

Examination of the decision values for the two-class models (Fig. 4)

reveals that there is substantial overlap between the distributions of

“no smile” and “A” level smiles. Furthermore, the first quartile of “A”

level smiles is negative in both datasets and therefore contributes to

substantial misclassification. Examination of the confusion matrices

for the multiclass models reveals a similar pattern: detecting “trace”

level smiles is difficult.

Surprisingly, detection performance was higher for multiclass

models than for two-class models; this difference was modest but

statistically significant (Fig. 3). This suggests that the best classifier

for binary detection is not necessarily the one trained on binary labels.

As far as we know, this is the first study to attempt binary expres-

sion detection using an intensity-trained classifier. Although collect-

ing frame-level intensity ground truth is labor-intensive, our findings

indicate that this investment is worthwhile for both binary expression

detection and expression intensity estimation.

4.3. Conclusions

We provide empirical evidence that the decision-value-as-

intensity heuristic is flawed in practice as well as in theory. Unfor-

tunately, there are no shortcuts when it comes to estimating smile

intensity: researchers must take the time to collect and train on inten-

sity ground truth. However, if they do so, high reliability with expert

human FACS coders can be achieved. Intensity-trained multiclass and

regression models outperformed binary-trained classifier decision

values on smile intensity estimation across multiple databases and

methods for feature extraction and dimensionality reduction. Multi-

class models even outperformed binary-trained classifiers on binary

smile detection. Examination of the distribution of classifier decision

values indicates that there is substantial overlap between smile in-

tensity levels and that low intensity smiles are frequently confused

with non-smiles. A much cleaner set of distributions can be achieved

by training a regression model explicitly on the intensity levels.

4.4. Limitations and future directions

The primary limitations of the current study were that it focused

on a single facial expression and supervised learning framework. Fu-

ture work should explore the generalizability of these findings by

comparing different methods for supervised learning and other fa-

cial expressions. Another limitation is the divergence between the

number of reduced features yielded by Laplacian Eigenmap and PCA.

Future work might standardize the number of features or forego di-

mensionality reduction entirely (at the cost of computation time or

kernel complexity). Finally, future work would benefit from a compar-

ison of additional techniques for facial landmark registration, feature

extraction, and dimensionality reduction.
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