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Reform of statistical practice in the social and behavioral sciences requires wider use of
confidence intervals (CIs), effect size measures, and meta-analysis. The authors discuss
four reasons for promoting use of CIs: They (a) are readily interpretable, (b) are linked to
familiar statistical significance tests, (c) can encourage meta-analytic thinking, and (d)
give information about precision. The authors discuss calculation of CIs for a basic stan-
dardized effect size measure, Cohen’s δ (also known as Cohen’s d), and contrast these
with the familiar CIs for original score means. CIs for δ require use of noncentral t distri-
butions, which the authors apply also to statistical power and simple meta-analysis of
standardized effect sizes. They provide the ESCI graphical software, which runs under
Microsoft Excel, to illustrate the discussion. Wider use of CIs for δ and other effect size
measures should help promote highly desirable reform of statistical practice in the social
sciences.

The popular media make statements like the following: “Support for the
prime minister was 38% in a poll with an error margin of 4%.” “The last ice
age ended between 11,500 and 10,000 years ago.” Such statements are, at an
informal level, readily comprehensible. They provide not only a “most
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likely” value of the variable of interest but also information about our uncer-
tainty or the precision of estimation.

More formally, many scientific disciplines routinely report findings by
making statements such as, “The speed of conduction of the diseased nerves
was 1.25 ± 0.4 ms-1.” “A kilometer downwind the concentration of the pollut-
ant was 14 ppm, with 95% confidence interval (7, 27).” We are given a point
estimate and an interval estimate, and once again the information is—at least
in an informal, intuitive way—easy to understand.

Each of these statements refers to a confidence interval (CI), which is an
interval or range of plausible values for some quantity or population parame-
ter of interest. A CI is a set of parameter values that are reasonably consistent
with the sample data we have observed. As the examples illustrate, CIs pro-
vide a mechanism for making statistical inferences that give information in
units with practical meaning for both the researcher and the reader. They give
a best point estimate of the population parameter of interest and an interval
about that to reflect likely error—the precision of the estimate.

Although our examples do not all make it explicit, the description of the
interval is accompanied by a statement of the confidence level, usually
expressed as a percentage, such as “95% CI.” We refer to this percentage as
C. It is never certain (unless we use C = 100) that the interval includes the true
value of the parameter of interest. The confidence level, or probability,
describes the chance of intervals of this kind including, or “capturing,” the
population value in the long run. We discuss below the correct interpretation
of this probability.

Imprecision as represented by the width of the CI can come from a variety
of sources, including sampling error (the number of people asked about their
support for the prime minister was not very large) and error of measurement
(speed of nerve conduction was measured by an indirect, inaccurate
technique). The width of the interval also depends on C, the probability level
chosen—other things being equal, higher probability levels result in wider
intervals.

Four Reasons to Use CIs

Our aim in this article is to discuss four main reasons for using CIs, to pres-
ent formulas and examples, and to go beyond intervals for means based on the
familiar central t distribution to intervals for standardized effect sizes based
on the noncentral t distribution. We provide the ESCI software, which runs
under Microsoft Excel, to support the discussion.

Four main reasons for using CIs are the following:

1. They give point and interval information that is accessible and comprehensi-
ble and so, as the examples above illustrate, they support substantive under-
standing and interpretation.
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2. There is a direct link between CIs and familiar null hypothesis significance
testing (NHST): Noting that an interval excludes a value is equivalent to re-
jecting a hypothesis that asserts that value as true—at a significance level re-
lated to C. A CI may be regarded as the set of hypothetical population values
consistent, in this sense, with the data.

3. CIs are useful in the cumulation of evidence over experiments: They support
meta-analysis and meta-analytic thinking focused on estimation. This feature
of CIs has been little explored or exploited in the social sciences but is in our
view crucial and deserving of much thought and development.

4. CIs give information about precision. They can be estimated before conduct-
ing an experiment and the width used to guide the choice of design and sample
size. After the experiment, they give information about precision that may be
more useful and accessible than a statistical power value.

Statistical Reform and Advocacy of CIs

The American Psychological Association’s (APA) Task Force on Statisti-
cal Inference (TFSI) recently advocated the increased use of CIs in reporting
the results of psychological studies (Wilkinson & TFSI, 1999). For example,
CIs should be reported along with, or instead of, hypothesis test results: “It is
hard to imagine a situation in which a dichotomous accept-reject decision is
better than reporting an actual p value or, better still, a confidence interval”
(p. 599).

The task force emphasized the importance of presenting findings in met-
rics that can be directly interpreted and of calculating CIs in these metrics:

Always present effect sizes for primary outcomes. If the units of measurement
are meaningful on a practical level (e.g., number of cigarettes smoked per day),
then we usually prefer an unstandardized measure (regression coefficient or
mean difference) to a standardized measure (r or d). It helps to add brief com-
ments that place these effect sizes in a practical and theoretical context. (p. 599)

This statement relates to our Reason 1. As noted, an important aspect of
choice of metric is the choice between original and standardized units for
reporting an effect size and its CI; we take up that question in detail below.

The task force continued with remarks related to our Reasons 3 and 4:

We must stress again that reporting and interpreting effect sizes in the context
of previously reported effects is essential to good research. It enables readers to
evaluate the stability of results across samples, designs, and analyses. Re-
porting effect sizes also informs power analyses and meta-analyses needed in
future research. . . . Interval estimates should be given for any effect sizes in-
volving principal outcomes. . . . Comparing confidence intervals from a current
study to intervals from previous, related studies helps focus attention on stabil-
ity across studies. (p. 599)

These recommendations promote an important move away from a long-
standing overreliance on NHST as the method for making statistical infer-
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ences in psychology. Finch, Thomason, and Cumming (2001) discussed fur-
ther aspects of the debate and efforts toward reform, in particular, the role of
past and future editions of the APA Publication Manual (e.g., APA, 1994).
As Kirk (2001) noted in his recent EPM article,

The APA publication manual and similar manuals are the ultimate change
agents. If the 1994 edition of the APA manual can tell authors what to capital-
ize, how to reduce bias in language, when to use a semicolon, how to abbreviate
states and territories, and principles for arranging entries in a reference list,
surely the next edition can provide detailed guidance about good statistical
practices. (p. 217)

And the chair of the APA Publications Committee coordinating the ongo-
ing revision of the publication manual observed that

Given the instructions on statistical reporting in the current [4th edition] Publi-
cation Manual, it is scarcely a radical change to provide instructions to report
effect sizes. . . . It is unfortunate that the reporting of effect sizes has been
framed as a controversy. Reporting of effect sizes is, instead, simply good sci-
entific practice. (Hyde, 2001, pp. 227-228)

Despite a long history of criticism and exhortation to adopt a wider variety
of alternative exploratory, descriptive, and inferential methods, NHST re-
mains the dominant technique (e.g., Bakan, 1966; Cohen, 1994; Loftus,
1993; Meehl, 1978; Nickerson, 2000). We strongly support these calls for re-
form and believe that wider understanding and use of CIs should be a central
aspect of changes to statistical practice in psychology, education, and cog-
nate disciplines.

Wider Use of CIs

CIs were introduced by Neyman in the 1930s (Cowles, 1989) and have
been advocated in the psychological literature at least since the late 1950s
(e.g., Chandler, 1957; Grant, 1962; LaForge, 1967). Before formal inferen-
tial methods were widely used in psychology, the probable error was often
reported. The probable error “is that deviation from the mean of a normal dis-
tribution that corresponds to a point dividing the area between the mean and
tail into two equal halves” (Gigerenzer & Murray, 1987, p. 18), that is,
approximately two thirds of a standard deviation. A criterion of three times
the probable error was often used. Although this corresponded approxi-
mately to a 95% CI, it was often interpreted as an indication that results “devi-
ated from chance.”

Many psychologists and educators are likely to have once learned about
simple procedures for calculating CIs for means; however, CIs are not typi-
cally reported in psychological journals (Finch, Cumming, & Thomason,
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2001). A number of explanations have been suggested for psychologists’
failure to calculate and report CIs. Schmidt and Hunter (1997) presented ar-
guments to counter a number of reasons given for continued use of NHST and
speculated on why there is strong resistance to change:

Accepting the proposition that significance testing should be discontinued and
replaced by point estimates and confidence intervals entails the difficult effort
of changing the beliefs and practices of a lifetime. Naturally such a prospect
provokes resistance. Researchers would like to believe there is a legitimate ra-
tionale for refusing to make such a change. (p. 49)

The tradition of NHST in psychology may also have meant that psycholo-
gists remained largely ignorant of CIs, especially as CIs have not been readily
available in software commonly used in the social sciences (Steiger &
Fouladi, 1997). Furthermore, “interval estimates are sometimes embarrass-
ing” (Steiger & Fouladi, p. 228)—that is, they reveal that many psychological
studies are very imprecise.

Reformers have argued that psychologists should routinely report CIs,
which can be done in a variety of ways. In medicine, it is common practice to
report numerical values of CIs in tables or text; in some sciences, it is stan-
dard to report means in a figure and attach error bars, which are commonly
either the standard error of the means or 95% CIs. (Standard error bars can be
regarded as giving an approximate 68% CI if the sample size is not small.) In
some fields of psychology, such as psychobiology, one or more of these prac-
tices are fairly common, but across much of published psychological
research, there is very little or no use of CIs and much room for improvement
of statistical practices.

We have some evidence to suggest that the wider uptake of CIs in psychol-
ogy will require more than just the adding of the task force recommendations
to a revised APA Publication Manual. As editor of Memory and Cognition
between 1994 and 1997, Geoffrey Loftus asked authors to report their results
as figures with error bars rather than relying on statistical significance tests.
As we report elsewhere (Finch, Cumming, Williams, et al., 2001), authors
found it difficult to relinquish their reliance on statistical significance testing
and were often unable or uncertain about how to calculate appropriate error
bars (or CIs) for their particular research designs. Also, even when they did
follow Loftus’s request and include a figure with error bars, only rarely were
these bars used to assist interpretation. Loftus’s further request, to use error
bars to obviate the need for NHST and p values, was almost never followed.
Finch, Cumming, Williams, et al. (2001) concluded that, although editorial
requirements may be important in achieving improved statistical practice,
other measures are also needed. They noted, however, the greater success of
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reforms in medicine in which many editors adopted standard recommenda-
tions for reporting statistical information, including use of CIs.

A further recommendation of the task force was that graphical representa-
tion should be used freely:

Although tables are commonly used to show exact values, well-drawn figures
need not sacrifice precision. Figures attract the reader’s eye and help convey
global results. Because individuals have different preferences for processing
complex information, it often helps to provide both tables and figures. This
works best when figures are kept small enough to allow space for both formats.
Avoid complex figures when simpler ones will do. In all figures, include graph-
ical representations of interval estimates whenever possible. (Wilkinson &
TFSI, 1999, p. 601)

We concur and go further: We believe that vivid graphical representations
can assist greatly in the understanding of statistical concepts. It can be even
better if these representations are dynamic and interactive (Thomason,
Cumming, & Zangari, 1994). Therefore, in designing the ESCI software, we
aimed for maximum use of graphics and interactivity.

Aims of This Article

Our aims here are to provide explanations and resources that will assist so-
cial and behavioral scientists in understanding and using CIs for some simple
research designs. We focus on the following basic cases:

1. single group design, where interest is in the population mean;
2. two independent groups design, where interest is in the difference between

the two population means; and
3. single group, two repeated measures (e.g., pretest and posttest measures) de-

sign, where interest is in the population mean for change from first to second
measurements.

Recent articles in the psychological literature have described procedures
for calculating CIs for effect size measures and have explained that, in many
situations, noncentral distributions are needed for calculating CIs (e.g.,
Fidler & Thompson, 2001 [this issue]; Smithson, 2001 [this issue]; Steiger &
Fouladi, 1997). We aim in this article to provide an elementary introduction
as a basis for the more complex cases taken up in those articles, which include
a range of multiple regression and analysis of variance models.

We will describe when central or noncentral distributions are required for
calculation of CIs for selected population parameters of interest to social sci-
entists. We will refer to the ESCI tools that allow users to investigate some
concepts related to CIs and to use CIs with simple data sets.
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Case 1: Single Group Design

The Basic CI

The t, F, and χ2 distributions are families of distributions. For example,
there is not a single t distribution but rather many t distributions that vary in
spread depending on the degrees of freedom. Although the most common
application of these distributions in psychology and education has been for
NHST, they also underpin the calculation of CIs. Here, we will remind you of
the application of the familiar t distribution for calculation of CIs for a mean
in original measurement units.

Our example is for Case 1, the simple case of calculating the CI for the
mean of a single group, of size n, assumed to be a random sample from a nor-
mally distributed population. Consider the following:

X

S n
tn

−
−

µ
~ ,1

(1)

where “~” means “is distributed as.” This quantity can be thought of as a stan-
dardization of the difference between an estimator, the sample mean X , and
the parameter, the population mean µ. Irrespective of the value of µ, the quan-
tity above has a t distribution with (n – 1) degrees of freedom. It has a sym-
metric t distribution centered about zero. This symmetry arises because (X –
µ) is normally—and therefore symmetrically—distributed about zero. The
sample standard deviation S (in the denominator) is closely related to the χ2

distribution.

CIS, METHOD 1

First, we describe the conventional explanation of the basic CI formula.
We will refer to this approach as Method 1.

We can make probability statements about the quantity in Equation 1,
such as the following:

Pr ( . ) ( . ) . ,− < − <








 =− −t

X

S n
tn n1 10975 0975 095

µ (2)

where tn – 1(0.975) refers to the 0.975 quantile from a t distribution with (n – 1)
degrees of freedom. It is the value of the t distribution that gives upper and
lower tails that sum to 5% of the area under the distribution. Note that in situa-
tions in which n is large, the 0.975 quantile from the t distribution is very
close to that of the standard normal distribution, a value of 1.96. So, for 95%
of large samples, of any given size, the distance between any sampled mean
and µ will be no more than 1.96 times the standard error. Hence, Equation 2
takes a familiar form for large samples:
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Pr . . . ,− < − <
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X

S n

µ (3)

and the approximation becomes closer as n increases.
Rearrangement of Equation 2 provides the familiar result for a CI. First,

we multiply through by S/ n:

Pr(–tn – 1(0.975) × S� n < X – µ < tn – 1(0.975) × S n) = 0.95. (4)

This probability statement refers to the distance between a sample mean and
the population mean that it is intended to estimate, measured in terms of the
standard error of the mean: S� n.

Further rearrangement gives a probability statement with an interval cen-
tered around µ:

Pr(X – tn – 1(0.975) × S n < µ < X + tn – 1(0.975) × S� n) = 0.95. (5)

This probability statement gives directly the following formula that we
can apply to our data to calculate a 95% CI for µ:

x ± tn – 1(0.975) × s n. (6)

(We are following the convention that an uppercase Roman letter signals a
random variable, and the corresponding lowercase letter is a particular real-
ization of that variable. So, in the earlier general probability statements we
used X and S, but here we use x and s because these are the values calculated
from a sample.) Essentially, Method 1 for constructing a CI for µ involves re-
arranging a probability statement about X to make a probability statement
about an interval containing µ.

PIVOTAL QUANTITIES

Quantities of the general form

( – )Estimator Parameter

SE

are pivotal quantities. Probability statements using pivotal quantities can typ-
ically be “pivoted” or rearranged to construct CIs for population parameters.
The Case 1 quantity in Equation 1 is pivotal, and we illustrated above how it
can be pivoted to obtain the CI for µ. Similar principles can be used to derive
CIs for population mean differences and population variances.

We emphasize that the procedure for calculating the CI for µ does not
depend in any way on the particular value of the population parameter µ that
we are estimating. This is a property of pivotal quantities: Estimation of the
bounds of the CI does not depend on the value of the parameter we wish to
estimate (Cox & Hinkley, 1974). We will see below that CIs for effect sizes
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are typically more difficult to estimate because such intervals depend on
quantities that are not pivotal.

An Original Units Example, Case 1

Example. A test of verbal ability has been constructed to have a population
mean score of 25. We take a sample of 12 children and assess their verbal abil-
ity scores as {33.0, 47.0, 23.5, 35.0, 35.5, 26.0, 28.5, 24.0, 37.0, 34.0, 30.0,
38.0}. We calculate x = 32.6 and s = 6.72.

Figure 1 shows a simple dot plot of the data points for this single group, the
sample mean, and the 95% CI for the population mean µ, which is (28.4,
36.9). (You can use ESCI CIoriginal1 to make these calculations and gener-
ate a similar display for your own data.) Variations on Figure 1 (or explora-
tions with CIoriginal) illustrate some basic features of the original units CI
for the population mean, including the following:

• The CI is centered on the sample mean and is symmetric.
• Higher chosen C (percentage confidence) requires a wider CI.
• Larger n (sample size) gives a shorter CI.
• For many small but realistic data sets in psychology, the 95% CI often may

seem disappointingly wide.

CIs as a Set of Plausible Values for

Figure 1 also shows µ0, which is any particular value we may care to con-
sider (25, in the case illustrated) for the population mean. If we regard this
value as being specified by a null hypothesis, we can conduct a conventional t
test of our sample mean against this value; the t and two-tail p value for that
test are displayed by CIoriginal. Varying µ0 illustrates the relationship
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Figure 1. A part image from CIoriginal.
Note. Twelve data points are shown as a dot plot. The filled dot is the sample mean, 32.6, and the bars mark the
95% confidence interval for µ. The vertical line marks µ0 = 25, a value of µ chosen for reference. Many numer-
ical results are also reported by CIoriginal, including the result of a t test of the hypothesis that µ = µ0.
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between a CI and the p value: The interval captures µ0 if and only if the p
value, expressed as a percentage, is greater than (100 – C), where C is our
chosen percentage confidence level. We can take the p value as an index of
how far our sample mean is from any particular µ0 and can regard our sample
mean as “compatible with” that µ0 if the p value is not too small. Furthermore,
the CI is just that set of µo values meeting this criterion. Informally, the CI is
the set of µ values that could plausibly have given our sample mean.

CIS AND NHST

The informal argument of the previous paragraph can be, and usually is,
expressed in NHST terms: The C% CI captures µ0 if and only if the conven-
tional test of H0: µ = µ0 (at the (100 – C) level) is not statistically significant,
so the CI is that set of µ values for which the data would not lead to rejection
of the corresponding null hypotheses. Although our Reason 2 is the link
between CIs and NHST, in the presentation of Method 1 above we avoided
NHST language to show that understanding of CIs need not depend on NHST
and as part of the general reform agenda to deemphasize NHST. In addition,
note that a CI can be computed even (a) if no null hypothesis is stated or (b) if
a stated null hypothesis turns out to posit a wildly wrong parameter value.

Reason 2, the link between CIs and NHST, should not be used simply to tie
every use of CI back to a statistical significance test. As Thompson (1998)
argued, “If we mindlessly interpret a confidence interval with reference to
whether the interval subsumes zero, we are doing little more than nil hypoth-
esis statistical testing” (p. 800). We have observed such examples in practice
(Finch, Cumming, & Thomason, 2001). There are other aspects to this rela-
tionship. For example, the best way to teach NHST may be to teach CIs thor-
oughly first, then to introduce, explain, and motivate NHST in terms of the
relationship with CIs. Hunter (1997) advocated this approach, which is used
in some popular statistics textbooks (e.g., Moore & McCabe, 1993). It is also
commonly used in statistics textbooks in the disciplines of, for example,
management and business. Lockhart (1998) made much use of CIs in his sta-
tistics text for psychology, and, most recently, Smithson’s (2000) text Statis-
tics With Confidence is based strongly on CI ideas.

CIS, METHOD 2

Thinking of the CI as the set of plausible population parameter values
leads to Method 2, an alternative derivation of the CI formulas given above.
This can serve as a bridge to the derivation of CIs using noncentral distribu-
tions we consider below.

Consider µL and µU to be the two most extreme values of µ that would meet
our criterion of plausibility or compatibility with our data, as shown in Figure 2.
These are, of course, simply the ends of the CI, so
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µL = x – tn – 1 (0.975) × s� n and µU = x + tn – 1 (0.975) × s� n. (7)

Our criterion means that µL is chosen so that the right tail area of the sam-
pling distribution of t that lies to the right of

x

s n
L−µ

/

is 1
2(100 – C)�100, and correspondingly for µU.
In NHST terms, and referring as in Figure 2 to the sampling distributions

scaled to the original units axis, µL and µU are such that our sample mean lies
on the boundary of the rejection region, for null hypotheses of µ0 = µL and µ0 =
µU. The critical distance, which gives the length of each arm of the CI, is that
from µL to our mean (or µU to our mean). Because in this case, as noted earlier,
the shape of the sampling distribution is independent of µ (that is, t for the
original units sample mean is pivotal), this distance is the same as that for the
sampling distribution around any µ.

To put it another way, and using C = 95, we wish to find the lower and
upper bounds on µ such that

Pr . Prt
x

s n
t

x

s n
n

L
n

U
− −≥ −







 = ≤ −







1 10025

µ µ
and  = 0025. .

(8)

Cox and Hinkley (1974) described what they call a simple rule: “to obtain
‘good’ 1 – α upper confidence limits, take all those parameter values not ‘re-
jected’ at level α in a ‘good’ significance test against lower alternatives.
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Figure 2. Sampling distributions.
Note. The two curves are sampling distributions, with the shape of t distributions (df = 13), scaled to the origi-
nal units axis. In accord with Method 2 (see text), they have been positioned so that the size of the right tail
(dark shading) of the lower distribution that falls to the right of x is 1

2(100 – C)/100, as is the size of the left tail
(light shading) of the upper curve that falls to the left of x . (C is the percentage confidence of the CI being con-
structed.) Then, µL and µU are the means of the curves positioned in this way and define the lower and upper
ends of the CI for µ.
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There is an obvious modification for obtaining ‘good’ lower confidence
limits” (p. 214).

To summarize, Method 2 is the following process for obtaining the CI:
Thinking graphically and with Figure 2 in mind, slide the sampling distribu-
tion until the right tail beyond x is the criterion size of 1

2(100 – C)/100; the
mean of the distribution then gives the lower bound of the interval. Corre-
spondingly, find the upper bound. The calculation is easy because the rele-
vant distance is independent of µ, the parameter being estimated. Below, we
will need to use Method 2 to derive CIs for a standardized effect size measure,
and in that case the relevant distance does depend on the parameter being
estimated.

The Level of Confidence, C

Figure 3, which comes from CIjumping, may assist understanding of
level of confidence. It shows an assumed normal population, mean µ, the dot
plot of a random sample, size n, and the mean and 90% CI for µ calculated
from that sample. It also shows the means and CIs calculated from 19 previ-
ous samples taken independently from the population. In any real case, we
have just one sample mean, and thus one CI. But this can be considered one of
a potentially infinite set of intervals, each generated from an independent rep-
lication of the experiment. In the long run, C% of intervals would cover µ, the
population mean. C, considered as a probability, applies to the process of cal-
culating the CI rather than to any particular interval. In thinking about the
meaning of level of confidence, note that it is the CI that varies, whereas µ is
fixed although unknown, as illustrated in Figure 3.

Considering Figure 3, and CIjumping, it is important to recognize that
the situation being represented is artificial in two ways: In any real experi-
mental situation (a) we do not know µ, and (b) we take only one sample, not
many.

Even so, exploration of the simulation illustrates a number of important
features of CIs. For example,

• In accord with the formula, average CI width varies inversely as the square root
of n: To halve the average width, we need to take samples four times as large.

• Observing sequences of CIs often gives the impression that successive inde-
pendent CIs jump around to a surprisingly large extent, and very haphazardly.
Realizing this may help undermine the compelling illusion, related to the law
of small numbers (Tversky & Kahneman, 1971), that our particular sample and
CI must surely represent the population closely!

The Standardized Effect Size, Cohen’s

We earlier quoted some statements by the TFSI about effect sizes.
Reporting effect size measures is important because it focuses attention on
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the substantive results and facilitates meta-analysis. Often, an original score
effect size will be most readily understood, but a standardized effect size
should be reported as well if doing so helps research communication. We will
consider here Cohen’s δ, a simple and basic standardized effect size measure.
(Note that Cohen [1988] referred to this measure as d; we discuss our choice
of notation in a section below.) Cohen (1988) and Hunter and Schmidt
(1990), among others, have explained how δ is related to Pearson’s correla-
tion r and to some other effect size measures. Our discussion just of δ may
therefore have some breadth of applicability.

Informally, Cohen’s δ is a mean or mean difference, standardized via divi-
sion by a relevant standard deviation. We follow Hunter and Schmidt’s
(1990) notation and use δ for the population parameter and d when we calcu-
late the sample statistic. For our Case 1, we define
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Figure 3. A part image from CIjumping.
Note. The original units axis is shown below. The heavy curve at the top is the assumed normal population dis-
tribution, and the light curve is the sampling distribution of sample means of size n = 14. The most recent sam-
ple of this size is shown as a dot plot. Immediately below is the mean and 90% confidence interval (CI) for µ
calculated from this sample. Below that are the means of the previous 19 independent random samples, each
shown with its 90% CI. The unfilled dots signal samples for which the CI does not capture µ0, which is here
chosen to equal µ. Note the haphazard variation from sample to sample in the position of the mean and in the
length of the CI.
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δ µ µ
σ

= − 0 , (9)

where µ0 is a reference value for the population mean, often but not always
chosen to be zero. The corresponding sample statistic that we calculate is

d
x

s
= −µ0 . (10)

In this single sample case, the conventional t test statistic for testing the
hypothesis µ = µ0 about the population mean, with (n – 1) degrees of freedom,
is

t
x

n
= −µ0

s
. (11)

The last two formulas immediately give the relation that, for Case 1,

d
t

n
= . (12)

This simple and appealing formula is worth remembering: Even if you are
working with statistical software that does not give d, it is sure to give t, then
for Case 1, simply dividing by n gives d.

Figure 4, from CIdelta, shows as in Figure 1 our example data as an origi-
nal score dot plot, and x and the CI for µ. It shows also the scale of d, which
has zero at the chosen µ0 reference point of 25 and is in units of the standard
deviation s, and the value of d, which is calculated as d = ( ) . .x s− =25 114
Note that we are using 25, the known µ, as the reference value for calculating
the effect size, but are using s to estimate the unknown σ. The d value is a sim-
ple descriptive statistic for this group of children: Their mean verbal ability
score is a little more than one standard deviation higher than 25. (We might
choose that reference value because we are interested in assessing how differ-
ent our group of children is, on average, from the mean of the population on
which the test was developed.) By “effect size” here we refer to the difference
between the mean for this group and our chosen reference value of 25.

If we were prepared to regard our group as a random sample from some
population of children, our d would be an estimate of δ in that population, and
the t statistic (shown by CIoriginal; see Figure 1) could be used to test the
hypothesis that the mean in this population equals 25.

Cohen (1988) emphasized that an effect size should be interpreted in its
context and argued that, because d is in standard deviation units, it can be
interpreted as having general meaning. Cohen suggested that, in many situa-
tions in behavioral science, d values of 0.2, 0.5, and 0.8 can be regarded,
respectively, as small, medium, and large. He cautioned, however, that these
values are arbitrary and that effect sizes should be interpreted in their particu-
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lar research situation. If we follow Cohen’s suggestion, the d in the example
above is a very large effect. Cohen’s d has value as a descriptive statistic and
also as a measure that can be used in meta-analysis to combine the results
from studies that used a variety of original measures.

We next wish to find the CI for δ, but this turns out to be complex because d
(like t but unlike the simple original score mean X) is a ratio of two quantities,
each of which is an estimate calculated from the data. This means that we
must now consider the noncentral distributions.

Noncentral Distributions

The families of t, F, and χ2 distributions are more extended than social sci-
entists may realize. Typical inferential techniques are based on central distri-
butions, like the t distribution described above. There are, however, non-
central distributions, distributions that are not centered at zero, that also
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Figure 4. A part image from CIdelta.
Note. To the features of Figure 1 are added a scale for d, with zero at the chosen reference value µ0 and which is
marked in units of s = 6.72, the sample standard deviation. The lower filled dot is the mean d = 1.14 for this
sample.
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prove useful for statistical inference. We next focus on noncentral t distribu-
tions and their application.

Central t distributions are described by one parameter, the degrees of free-
dom (df). Noncentral t distributions have an additional parameter, the non-
centrality parameter, for which we use the symbol ∆. (This parameter should
not to be confused with the standardized effect size of Glass, 1976, which
also uses this Greek letter.) Central t distributions, which are always symmet-
ric, arise when a normally distributed variable with a mean of zero is divided
by an independent variable closely related to the χ2 distribution. (See the
paragraph above containing Equation 1.) Noncentral t distributions arise
when a normally distributed variable with mean not equal to zero is divided
by an independent variable closely related to the χ2 distribution. They are not
symmetric (see Figure 5), and the degree to which they are skewed depends
on ∆, the distance by which the mean of the normal distribution is displaced
from zero.

Notation

Before exploring the properties of noncentral t distributions, we should
explain our choice of notation. A fundamentally important contemporary
development in statistics in the social sciences is that of meta-analysis. Meta-
analytic techniques are advancing rapidly and becoming more widely used.
Terminology is becoming more consistent but has not yet fully stabilized.
Even the symbols for describing Cohen’s δ are not yet universally agreed.
Cohen (1988) originally defined d to be the population parameter and used ds

for the sample statistic. Hunter and Schmidt (1990, and in their other influen-
tial writings on meta-analysis) used d for the sample statistic and δ for the
corresponding population parameter. This use has the important advantage of
being consistent with the widespread and valuable practice of distinguishing
sample statistics (Roman letters: X , S) from population parameters (Greek
letters: µ, σ). We adopt and recommend this latter use rather than Cohen’s.

However, δ is also used in mathematical statistics for the noncentrality
parameter for t and other noncentral distributions. One argument of this arti-
cle is that standardized effect size measures, such as δ, should be used more
widely, and in particular CIs for δ should be reported where appropriate.
This, as we shall see, requires use of noncentral t, and so we cannot avoid
Cohen’s δ and noncentrality parameters being considered together. Thus, we
cannot use the symbol δ in both roles. We elect to privilege meta-analytic
considerations, use δ as the population parameter for Cohen’s effect size
measure, and choose ∆ for the noncentrality parameter. In choosing ∆, we are
following the authoritative if isolated precedent of Pearson and Hartley
(1972). We make this choice despite the disadvantage that Glass (1976) used
∆ for his standardized effect size.
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Noncentral t Distributions

Figure 5 shows a number of noncentral t distributions and, for compari-
son, central t distributions. Until recently, accurate calculation of noncentral t
probabilities has been very difficult, and so particular attention has been paid
by statisticians to numerical approximations and to the generation of tables
for practical use. This intractability is shared by other noncentral distribu-
tions and is no doubt one reason why psychologists have made little use of
them. Now, however, although development of accurate software remains
challenging (Steiger & Fouladi, 1997), basic noncentral functions are pro-
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Figure 5. Central and noncentral t distributions.
Note. The t axis at the bottom is the same for all sets of curves. On each line, the four curves have the same df, as
indicated at left. On each line, the left curve is central t (∆ = 0), whereas curves to the right have successively
greater noncentrality parameters: ∆ = 2, 5, 10, respectively. The curves illustrate that noncentral t distributions
are centered approximately at ∆, especially for ∆ small and df large. The variance of noncentral t and the degree
of positive skew (for ∆ positive, as here) are both larger for large ∆ and small df. Noncentral t approaches its
normal distribution asymptote only slowly. Use NonCentralt to explore these properties further.
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vided in some statistical software widely used by social scientists, notably
SPSS. In addition, our ESCI software is intended to assist understanding of
noncentral t and its use, and to provide a computation facility for simple
cases.

Owen (1968) surveyed the properties and applications of noncentral t.
Hogben, Pinkham, and Wilk (1961) studied the mean and variance: The
mean is a∆, where the factor a depends on df and approaches 1 as df increases.
For df = 2, a = 1.77; for df = 15, a = 1.05; and for df = 60, a = 1.013. Therefore,
noncentral t should appear centered approximately at ∆, except for small df.
The variance is a complex function involving ∆2. It approaches 1 as df
increases but only relatively slowly. It is a general property of noncentral t
that it approaches its asymptotic symmetric—and in fact normal—shape
only slowly.

NonCentralt supports exploration of how changes to df and ∆ influence
the shape of the distribution. Figure 5 gives some examples to illustrate the
effects of such changes.

Investigation with NonCentralt illustrates properties of noncentral t dis-
tributions, including the following:

• When ∆ = 0, noncentral t reduces to central t and thus is symmetric and
centered at zero.

• Noncentral t is centered approximately at ∆, which may take any positive or
negative value.

• For a given ∆, as df increases, noncentral t approaches central t (and thus the
normal distribution) in shape.

• The approach to the asymptotic symmetric shape is fairly slow: For ∆ = 2, even
for df = 60, noncentral t is (just) visibly skewed (see Figure 5). For larger ∆, the
approach to a symmetric shape is even slower. Therefore, the rule of thumb of-
ten used by psychologists in other contexts that, when n is at least 30, the nor-
mal distribution is a sufficiently good approximation, should generally not be
applied to noncentral t.

• The curve is skewed, very strongly for small df and less so as df increases.
• The degree of skew increases markedly with the absolute value of ∆.
• For positive ∆, the skew is positive: The upper tail is fatter.
• Positive and negative ∆ values, of the same absolute value, give curves that are

the same if reflected about a vertical through zero. For negative ∆, the skew is
negative. In other words, the outward tail (the tail remote from zero) is the fat-
ter tail in every case.

CIs Needing a Noncentral t Distribution

Consider the quantity

X

S n
tn

−
−

µ0
1~ .,∆

(13)
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This quantity, the familiar one-sample t statistic, has in general a noncentral t
distribution. Only if µ = µ0 does it have a central t distribution. One way of
thinking about the location shift involved is to rewrite the statistic as

X

S n
tn

− + −
−

µ µ µ( )
~ .,

0
1 ∆

(14)

The location shift (µ – µ0) represents some difference between the true value
of µ and some chosen reference value µ0. We can regard this difference as a
measure of the size of some effect.

So why is a central t distribution always used when conducting a null
hypothesis test? Recall that in testing a null hypothesis, it is always assumed
that the null hypothesis is true. Hence, if the null value is µ0, µ = µ0, there is no
shift in the distribution, and so the relevant distribution remains the central t
distribution.

The noncentrality parameter for the distribution of t described above is

∆ = −µ µ
σ

0

n
. (15)

As we shall explain, it is estimation of this parameter that is necessary for the
estimation of CIs for some standardized effect size measures.

The noncentrality parameter is closely related to the population effect size δ:

δ µ µ
σ

= − =0 ∆ n , and so ∆ = δ n. (16)

Hence, we can find a CI for δ if we can find a CI for ∆.

CIs for Cohen’s

We first consider a CI for ∆. Constructing a CI for ∆ is not straightforward
because ∆ is a function of two parameters, µ and σ, and both of these must be
estimated from the data. We cannot simply pivot a probability statement as
we did for the CI for µ but must use the noncentral t distribution.

We can, however, think of the range of plausible values of ∆, just as we
considered plausible values of µ in Method 2 for finding the CI for µ. We
define ∆L and ∆U to be the two extremes of the set of plausible values of ∆
given our data; they will be the bounds of the CI for ∆. Then, we can calculate
these bounds by considering which particular noncentral t distributions are
compatible with our data.

Finally, having found upper and lower bounds for ∆, we divide these by
n to find the bounds for δ.

We start with our observed x and s, to calculate
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t
x

s n
n− = −

1
0

, ,∆
µ (17)

which will have a particular noncentrality parameter. Now, if we take C = 95,
for the lower bound for ∆, ∆L:

Pr .,t
x

s n
n L− ≥ −







 =1

0 0025∆
µ

and, for the upper bound for ∆, ∆U:

Pr . .,t
x

s n
n U− ≤ −







 =1

0 0025∆
µ

(18)

So, t n L−1,∆ is the noncentral t distribution that gives rise to the observed t value
with a probability of 0.025 in its upper tail, and t n U−1,∆ is the distribution that
gives rise to the observed t value with a probability of 0.025 in its lower tail.
There is no formula that can give us these values of ∆ directly, and statistical
software typically uses an iterative algorithmic search to find the values (cf.
Smithson, 2001).

Once the upper and lower bounds for ∆ are found, it is easy to apply Equa-
tion 16 to compute the CI for δ. It is (∆L � n, ∆U � n).

Informally, we described Method 2 as one way to find the CI for µ by slid-
ing the two curves in Figure 2 until the upper tail of the lower distribution and
the lower tail of the upper distribution—tails defined relative to the position
of our sample mean—each was of size 1

2(100 – C)/100. We can use an identi-
cal rationale to find the CI for ∆, the only difficulty being that the shape of the
distribution changes as we “slide” it along the t axis because ∆ itself is one
parameter determining the shape.

Figure 6 shows a combination of the data presentation of Figure 4, includ-
ing the axis for d, and the two curves of Figure 2, but here they are noncentral t
distributions. The ∆ parameters for these two curves define the bounds of the
CI for ∆; then the CI for δ is easily calculated using Equation 16.

ESCI FOR THE CI FOR δ

In CIdelta, from which Figure 6 is derived, the user can slide the two dis-
tributions until the tail sizes are as desired and then read off the CI bounds for
both ∆ and δ. Alternatively, you can click a button to have Excel do the work
and simply watch the curves move until the correct tail sizes are achieved
through the iterative estimation process. You can enter your own data and
find the CI for µ—which as usual is in original units—and the CI for the stan-
dardized effect size, Cohen’s δ, relative to your chosen reference value µ0.
The CI bounds for µ are read off the upper, original score axis, and the CI
bounds for δ are read from the lower d axis. For our example, the CI for µ is
(28.4, 36.9), and the CI for δ is (0.39, 1.86).
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As well as the interactive diagrams, CIdelta provides numerical values of
descriptive statistics, CIs and t and p values. You can also mark the endpoints
of the two CIs calculated from your data and note where these fall on both the
original score axis and the d axis. In our example, verticals through the end-
points of the CI for δ intersect the upper, original score axis at 27.6 and 37.5.

Consideration of the derivations above and exploration with CIdelta can
lead to a number of conclusions, including the following:

• These are different CIs, for different parameters, on different axes.
• The CI for µ is, as noted earlier, symmetric and centered on the observed x.
• The CI for δ is in general not symmetric around the mean d.

552 EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT

Figure 6. A part image from CIdelta.
Note. To the features of Figure 4 are added two noncentral t distributions, positioned in accord with Method 2
(see text) and as illustrated (for central t distributions) by Figure 2. The ∆ values for the two curves shown
(1.35, 6.43) are converted to δ values, which become the ends of the CI for δ (0.39, 1.86). This interval is shown
as the bars around the lower filled dot, which as in Figure 4 is d for this sample. Note that the lower CI (for δ) re-
fers to the lower scale, and the upper CI (for µ) refers to the upper scale. They are different intervals, estimating
different parameters.
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• It is important to think of d and δ as measuring a standardized distance from a
particular chosen µ0. So, if you change µ0, there will be no change in the CI for
µ, but the CI for δ may change considerably.

• If in CIdelta you change µ0 and observe the CI for δ changing, sometimes it—
the lower CI in Figure 6 or on screen—will appear shorter than the upper CI
and sometimes longer. If µ0 is positioned within the CI for µ, the lower CI is
typically shorter on screen than the upper. However, as µ0 is moved outside the
upper CI, especially if it is moved far outside, the lower CI is typically longer
on screen and can be considerably longer.

• At very small sample sizes, and thus small df, the CI for δ is particularly wide,
and the tendencies noted above are particularly marked.

• Presenting the two CIs on a single diagram (Figure 6 and CIdelta), and making
length comparisons as above, is misleading in the sense that it may suggest a
fixed mapping between the two scales on which the two CIs are represented. In
fact, the d scale not only depends on the placing of µ0, which sets the zero, but
also on the value of s for this particular sample, which sets the unit of the lower
axis. If a different independent sample were taken, we would expect the two
CIs to be different but, in addition, we would expect s to be different, and so
even the scale on which the CI for δ is represented would be different.

CIs for and

Comparison of the CIs for µ and δ may prompt a number of thoughts.
First, the two intervals are calculated from the same data: Should one be pre-
ferred? The answer is that both are legitimate and useful; they simply tell us
about different parameters. If we are interested in µ, the population mean in
original units, then the simple CI based on central t is appropriate. If, how-
ever, we have a quite different aim and wish to know what the data can tell us
about the standardized effect size in the population relative to our chosen ref-
erence value µ0, then the CI for δ, based on noncentral t, is appropriate. We
are asking a very different question, so it should not be surprising that the
answer we derive from our data is different.

Second, consider statistical significance testing. Earlier, we referred to the
familiar single sample t test, based as usual on central t, which is appropriate
for testing a null hypothesis about µ. In contrast, testing a null hypothesis
about δ is not straightforward and requires use of noncentral t. The most prac-
tical way to carry out such a test is to find the CI for δ, then to note whether
this includes the particular δ value specified in our null hypothesis.

Thinking further about NHST, examination of Figure 6 may prompt con-
sideration of a vertical line positioned to be captured by the lower but not the
upper CI. For example, a vertical line through 28.0 on the upper axis would
cut the lower axis at 0.45, meaning that µ = 28.0 corresponds to δ = 0.45.
(Note that this “correspondence” holds just for the particular s for our sample,
which sets the units of the d axis.) Surely, we might wonder, if we used the
upper CI to test a null hypothesis of µ = 28.0 and the lower to test the null
hypothesis δ = 0.45, would we be testing corresponding hypotheses but
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would we come to contradictory decisions? Would we reject the null for µ but
not for δ? In response, note first that for NHST, we need to specify the param-
eter value in our null hypothesis in advance. Second, because the relation
between the lower and upper scales depends on s, we cannot expect the null
values for µ and δ we specified in advance to line up vertically: It would be an
astonishing coincidence if they did happen to correspond. However, even if
they did come close to corresponding and did happen to fall so that just one
was captured by the relevant CI, there is no problem. As we keep emphasiz-
ing, the two CIs are for different parameters and need to be referred to differ-
ent scales. Just as it should not be surprising that the two intervals appear dif-
ferent in Figure 6, it raises no logical problem if NHST gives different
outcomes in the two cases.

If we choose to test H0: δ0 = 0, as we more commonly might, we are testing
the null hypothesis of a zero effect. In this case, there can be no difference
between two test outcomes. By the definition of δ (see Equation 9), testing
H0: δ0 = 0 is equivalent to testing H0: µ = µ0, which here is 25. As noted earlier,
the noncentral t distribution with δ = 0, and thus ∆ = 0, is simply central t, and
the test for δ is in this case the same as the familiar test for µ. Some thought
about Method 2 and Figure 6 supports the conclusion that the µ0 line in
CIdelta can never be positioned to be captured by one CI but not the other. If
it is positioned exactly at one end of the CI for µ, the corresponding end of the
CI for δ will also fall exactly on the µ0 line: That is the graphical equivalent of
noting that when µ = µ0, δ = 0.

Finally, consider the Method 1 explanation we gave earlier for the CI for µ.
An explanation like this is given in numerous textbooks. For the simplest
case, it starts by assuming some particular value for µ and a known popula-
tion standard deviation, σ. It considers the sampling distribution of the sam-
ple mean and notes the half width of the interval, centered on the assumed µ
value, that contains C% of sample means. This half width is then applied to
either side of the obtained sample mean to give the CI for µ. It may seem con-
tradictory that we start with a single particular value for µ but finish with a CI
that explicitly countenances the unknown (but fixed) µ having any one of a
range of values! In fact, there is no questionable logic here, just an important
step that is easily overlooked: We need to assume that the half width found for
our initially chosen µ value applies also for any other value of µ. Fortunately,
this is true for the µ case. (When we do not assume that σ is known, s is used
as an estimate, and the half width of the interval will vary from sample to
sample. However, Method 1 can still be used in this case to derive the CI for µ,
as in Equations 1 to 6 above.) Under our alternative formulation (Method 2,
as in Figure 2), once again the half width varies from sample to sample but,
most importantly, we do not need to make the assumption that the half width
is independent of the value of the parameter being estimated. This is fortunate
because this assumption is not true in the δ case.
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CIs for Cumulation of Evidence

Our Reason 3 for CIs is that they are useful for the cumulation of evidence
over studies and encourage meta-analytic thinking. The case for meta-analy-
sis has been made cogently by, for example, Hunter and Schmidt (1990) and
Schmidt (1996) and has been supported by the TFSI (Wilkinson & TFSI,
1999, p. 599).

Schmidt (1996) stated that

any single study is rarely adequate by itself to answer a scientific question.
Therefore each study should be considered as a data point to be contributed to a
later meta-analysis, and individual studies should be analyzed using not signif-
icance tests but point estimates of effect sizes and confidence intervals. (p. 124)

Schmidt argued that CIs provide a good way for evidence to be combined
over studies and that they will home in on an accurate value of the parameter
of interest, even if individual studies lack precision or give deviant results.

META-ANALYTIC THINKING

As we stated earlier, we believe it is important to promote researchers’ use
of meta-analytic thinking and that CIs can be very useful in helping achieve
this aim. This would be a substantial conceptual change; as Schmidt (1992)
noted, “It [meta-analysis] is a new way of thinking about the meaning of data,
requiring that we change our views of the individual empirical study”
(p. 1173).

There are several aspects to meta-analytic thinking. First, it should give an
accurate and justifiable appreciation of previous research on our question of
interest. Second, it should allow us to appreciate our own study as making a
probably modest empirical contribution, in the context of that previous
research—although the rare individual study can of course change thinking.
Third, it encourages us to present our results in a way that makes it easy for
future researchers to integrate them into future meta-analyses.

In the social sciences, little work has been done on how CIs can best be
used to support such meta-analytic thinking. We suspect there is room for
much thought and development. There is also great scope for learning from
other disciplines, especially the medical sciences, where general use of CIs
(e.g., Altman, 2000) and meta-analysis based on CIs is well established (e.g.,
Chambers & Lau, 1993; Duval & Tweedie, 2000; Greenland, 1987). We are
especially interested in graphical approaches: Light, Singer, and Willett
(1994), and Altman (2000) discussed graphical ways to present a set of CIs.
We offer here a simple way to view and combine a set of CIs for a single
parameter.
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META-ANALYSIS IN ORIGINAL UNITS

Consider a small set of Case 1 studies and suppose these constitute the pre-
vious research on a question of interest. If the same measurement scale was
used in each case and we consider the studies to be sufficiently comparable,
the original units means may be combined by simple pooling, as in the “bare
bones” fixed effect meta-analysis of Hunter and Schmidt (1990). Based on
the whole set of data, the overall simple weighted mean can be calculated, as
well as the CI for the assumed common µ. If we then carry out our own study
using the same measurement scale, we can include our own data and carry out
a second slightly larger meta-analysis. Software is available to assist, for
example, MetaWin (Rosenberg, Adams, & Gurevitch, 2000).

The original units sheet of MAthinking also supports such an analysis
and displays the CIs for µ, derived from each individual study and from the
two sets of studies (the previous research and that augmented by our study).
We simply enter the means, standard deviations, and sample sizes for the pre-
vious studies and for our own study. It is possible also to show the results of
NHST (simple t tests) for each study, although this is not necessary. This
allows a comparison of the classical review method of counting statistically
significant results and the (much preferable; see Schmidt, 1992, 1996) meta-
analytic approach of calculating a combined estimate.

META-ANALYSIS IN STANDARDIZED UNITS

MAthinking for original units requires that all studies use the same mea-
surement scale and dependent variables that are sufficiently comparable for
the original scores to be justifiably combined over studies. One of the advan-
tages of d is of course that the first assumption, use of the same measurement
scale, is not necessary. Figure 7, from the standardized units sheet of
MAthinking, shows a display combining the d values from each of a set of
studies, with CI for δ shown in each case. The results of our own study are
shown and are integrated into the whole. Finding each CI for δ requires itera-
tive calculations based on noncentral t; in MAthinking, the user needs to
click a button to trigger this process. Again, NHST results may be displayed
if desired.

In combining studies in this simple way, we do not mean to dismiss impor-
tant issues that should be considered in any real meta-analysis. Hunter and
Schmidt (1990), for example, discussed at length a considerable number of
threats to easy combination of studies and presented analytic methods that
allow the importance of these to be assessed.

Even so, working with MAthinking, in either original or standard-
ized units, may allow a number of useful insights to be gained, including the
following:
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• If there are even a few past studies, our own study will have only a modest in-
fluence on the final picture, unless our n is particularly large.

• The most important influences are the magnitude of the effect sizes from the
various studies and, especially, the consistency of these over studies.

• The statistical significance status of individual studies means little. Several
studies not individually reaching statistical significance can easily give a
“highly significant” combined result if the effect sizes are reasonably consis-
tent, at least in direction.

• n is important, but effect size is even more so (n has influence only via its
square root—and to a small extent via df).

Whether original or standardized units should be preferred, or both ana-
lyzed, is a matter for judgment in the particular situation. Using d may allow
cumulation even when different original units measures have been used in
different studies. On the other hand, because d is influenced by both a mean
(the numerator) and a standard deviation (the denominator), effect sizes that
are the same in original measurement units but subject to different error—
perhaps arising from different measurement error—will have different stan-
dardized effect sizes.
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Figure 7. A part image from the standardized units sheet of MAthinking.
Note. The d and n values for seven supposed previous studies are entered at top left. The program calculates the
results of a statistical significance test for each study and shows these in the next three columns. Clicking the
gray buttons triggers the iterative calculation of the CI for δ, the results of which are shown in two columns and
pictured at right as bars around the d value. A similar analysis is shown for a simple pooling of the seven previ-
ous studies. When d and n for our supposed current study are entered, the analysis is shown for this study and
for all eight studies pooled.
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THE DIVERSITY OF META-ANALYSIS

Meta-analysis can be appropriate for a wide range of situations and a vari-
ety of research goals. For example, Rosenthal (1991) started with a meta-
analysis of two means, and Hunter and Schmidt (1990, chap. 10) considered
meta-analytic combination of results within a single study, which may com-
prise replications with a single dependent variable or a number of different
dependent variables. Closer to the other end of the spectrum was Glass’s
(1976) classic study of psychotherapy that drew on 375 earlier research stud-
ies. The goal of a meta-analysis may be simple quantitative combination of a
few effect size estimates or may be to draw on sophisticated techniques to
identify moderator variables and to contribute to theory development (Cook
et al., 1992). Rubin (1990) spoke of using meta-analysis “for understanding
the underlying science” (p. 155). Such different meta-analytic situations are
of course likely to raise different issues about the combining of a variety of
measures and the advisability of working in original or standardized units.

Within a general encouragement for meta-analytic thinking, we would
like to emphasize the value of small-scale meta-analysis in the social sciences
to integrate results from a single researcher, a single laboratory, or a group of
collaborators. Small sets of measures from such a source are likely to be
closely related conceptually and less subject to diverse sources of measure-
ment error. Such small-scale meta-analysis should clarify findings rapidly
and if necessary provide input to later meta-analyses of larger scope. We hope
that MAthinking can illustrate and encourage such manageable, small-scale
analyses while also promoting understanding of some basic meta-analytic
ideas.

Statistical Power

Informally, power is the chance that, if there is a real effect, our experi-
ment will find it. More formally, power is the probability that we will reject
the null hypothesis if it is false. Statistical power is thus the following condi-
tional probability:

Pr(reject H0 | H0 is false).

If Ha is the alternative hypothesis, power is

Pr(reject H0 | Ha is true).

To calculate this, we need to use a point value for the population parameter
specified by Ha; we will consider just the case where this is µa.

Any value for power reflects a number of factors, including population
variability, design of the study, n, the chosen Type I error rate (α), and µa.
Often, it is useful to take a sensitivity approach to the complex interrelation of
so many variables by considering, for example, how power varies with n or
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with µa. Such calculations at the research planning stage can guide the choice
of n. After data are collected, power calculations are often used to give further
insight into the precision of such an experiment, perhaps now using estimates
(e.g., for population variability) based on the data. We will suggest, however,
that the precision of an experiment is better described by a CI.

Calculation of power after collecting the data (“post hoc power”) was dis-
cussed and supported by Cohen (1988) and is a practice of some social scien-
tists. However, the meaningfulness of such calculations has been questioned
by some statisticians: “The arbitrariness of power specification is of course
absent once the data are collected, since statistical power refers to the proba-
bility of obtaining a particular type of data; it is thus not a property of data
sets” (Greenland, 1988, p. 236). In other words, power, which is a conditional
probability that a particular NHST outcome will occur, does not make sense
with reference to a particular dataset—for which that NHST outcome either
did or did not occur. Power, whether calculated in advance or post hoc, should
be considered as a property of a potential experiment having particular fea-
tures (including design and sample size) and assuming particular values for
population variability and effect size. Again, we emphasize the value of a
sensitivity approach.

POWER AND NHST

We expect that, as NHST use declines, CIs become more widely used, and
more is understood about how CI width can—as we discuss in a following
section—be a good index of experimental precision, then need for the con-
cept of power will in many cases decline. Schmidt (1996) pointed out that

If significance testing is no longer used, then the concept of statistical power
has no place and is not meaningful. In particular, there need be no concern with
statistical power when point estimates and CIs are used to analyze data in stud-
ies and when meta-analysis is used to integrate findings across studies. (p. 124)

We should note, however, that power is used also in more complex contexts,
including multiparameter inference, in which NHST may not be readily dis-
placed by CIs.

Use of NHST can and should decrease markedly, at least in many simple
situations for which CIs provide a ready replacement. It remains to be seen
how widely NHST can be displaced and what uses of it might persist, and so
the extent of the future need for power is not yet clear. In the meantime, power
remains an important concept. If NHST is conducted, power should be con-
sidered. In particular, if a null hypothesis is not rejected, it is important that
power calculations be examined.

There are two additional reasons for our discussion of power here. First,
noncentral t needs to be used to assess power accurately, for any of our three
cases, although researchers and even textbook authors may not always realize
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this or may, in practice, use simple approximations. Because we are investi-
gating noncentral t and its properties and uses, it is natural to discuss power as
an application of these distributions. Second, developing a better understand-
ing of how CI width is best used as an index of precision may be assisted by an
understanding of power.

THE POWER DIAGRAM

Figure 8 is the standard diagram used to explain power in numerous statis-
tics textbooks. The two curves look identical and may be described as the
sampling distribution of the test statistic: one of the curves if the null hypoth-
esis is true and the other curve if the alternative hypothesis is true. If σ is
known and a z test is being used, the two sampling distributions are identi-
cally shaped normal distributions. However in the much more common case
of σ unknown, a t test statistic should be used. In this case, the null hypothesis
curve will be a central t distribution, whereas the alternative distribution is
actually a noncentral t distribution, with ∆ indexed by the difference between
µa and µ0, the population parameters postulated by the two hypotheses.

Many textbooks present the power diagram with two seemingly identical
curves and do not give a full account of what test statistic is being used and
with what assumptions. Few textbooks make the careful distinction between
the known σ condition, in which curves with identical shape are correct, and
the situation involving t, in which the shape of the curves is different. Hays

560 EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT

Figure 8. The conventional diagram for statistical power (as reproduced in many textbooks).
Note. The two sampling distribution curves appear identical, the left curve applying if H0 is true and the right if
Ha is true. The dark-shaded tails of the left curve correspond to the rejection region (total area α, which is .05 in
this case) for the statistical significance test. The total area of the gray tails of the right curve is statistical
power. In this case, power = 0.36. Note that the left tail of the right curve makes a contribution to power, al-
though here, as in most practical situations, this is tiny. If σ is known and we are using a z test, the two curves
are normal distributions and are indeed identical in shape. In any other case, however, the H0 curve is a t distri-
bution, whereas the Ha curve is a noncentral t distribution and thus is different in shape from the left curve.
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(1988) and Howell (1997) are examples of texts that make clear that non-
central t needs to be used if power is to be calculated accurately in this latter,
more usual situation. These texts refer the reader to tables, graphs, or approx-
imate formulas for the practical estimation of power.

Figure 9 is from ESCI Power and illustrates power when a t test statistic is
appropriate, and so distribution of the test statistic under the alternative
hypothesis is a noncentral t distribution. Figure 9 shows the two curves and
the value of power.

THE PROPERTIES OF POWER

Power can be used to explore the relations among df, ∆ or δ, α, and power.
Power is illustrated as the area under noncentral t, an accurate power value is
shown, and—using the simple relation Equation 16—the δ value correspond-
ing to ∆ if Ha is true is also shown. Conclusions that might be drawn include
the following:

• For the degenerate case of µa = µ0, ∆ = 0, the two curves become identical, and
power = α.

• For a two-tail test, as is always assumed in this article and in ESCI, power is the
sum of two tail areas under the Ha curve, although in practical situations one of
these areas is almost always negligible.

• Power is extremely sensitive to effect size, that is, to ∆; the most effective way
to have high power is to be trying to find a large effect!

• Power is also sensitive to df, that is, to n, but less so than to effect size.

CUMMING AND FINCH 561

Figure 9. A part image from Power for a single sample for which n = 12 and so df = 11.
Note. The left curve applies when H0 is true and is a central t distribution. As in Figure 8, the dark tails corre-
spond to the rejection region and have total area α = .05. The right curve applies when Ha is true and is a
noncentral t distribution, with ∆ = 2.7 and so δ = 0.78. The gray tails of this curve give power, which here is
0.69. Note that the two curves differ considerably in shape, and the Ha distribution is skewed, with an outward
fat tail.

 at UNIV OF PITTSBURGH on October 6, 2016epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


• Many of the earlier conclusions about the shape and behavior of the noncentral
t distributions have implications also for power.

Power also gives some findings that may be surprising to many research-
ers. It shows the percentages of NHST results expected to reach the conven-
tional p < .05 (*), p < .01 (**), and p < .001 (***) levels of statistical signifi-
cance if Ha is true. For the p < .001 level, these expected percentages may
seem in many cases surprisingly high. For example, if n = 20 and δ = 0.52 (a
medium-sized effect), the power (for α = .05) is only 0.60, yet fully 10.2% of
experiments (when Ha is true) will give a p < .001 statistical significance test
result. So, 10.2/0.60 = 17% of those results that reach conventional signifi-
cance (α = .05) will be ***. However, after a *** result (in fact, after any re-
sult, still assuming Ha is true), the chances are 1 – 0.60 = 0.40, fully 4 in 10,
that a replication would not even reach significance, p < .05! In summary, a
coveted *** result is not rare in many situations of only moderate power, and
even then a replication is far from guaranteed to be even *!

This observation raises interesting unexplored questions for those inter-
ested in statistical cognition: Do researchers realize that a *** result is not
rare even for a medium-sized effect and moderate power? Do they realize
what low or moderate power implies about replication, however small the p
value obtained in a particular case?

APPROXIMATIONS FOR POWER

It has long been recognized that noncentral t is the distribution needed for
the correct analysis of power in the simple cases we are considering (e.g.,
Kendall & Stuart, 1961, p. 255). However, calculation difficulties have meant
that approximations have been widely used for practical calculations. Cohen
(1988) used various approximate methods to calculate many of his power
tables and in many of his recommended procedures involving power. His
emphasis was on substantive interpretation and a good appreciation of the
relations between power and various other characteristics of an experiment
rather than on precise calculations.

One simple approximation is, as mentioned above, to use two normal dis-
tributions and to calculate a power value as if σ is known and a z rather than a t
test is being conducted. This approximation gives power values that are accu-
rate or close to accurate, to two decimal places, for n not small (say 20+) and
α not small (say not less than .05). The approximate values are, if anything,
overestimates because no account is taken of the need to estimate σ, and, for
small n and small α, the values can be considerably too high.

Now that software, including SPSS and ESCI Power, is readily available
to give accurate calculation of power, it should no longer be necessary to use
approximations, at least for the simple situations we discuss here. However,
we should bear in mind Cohen’s (1988) approach: Concern over precision of
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the calculation method must not blind us to the assumptions we are making.
The values we enter for σ and δ, for example, may be quite speculative. A
sound strategy is to take a sensitivity approach and examine how power varies
with the other variables.

A RANGE OF VALUES FOR POWER

To calculate statistical power, we need to specify a δ value. For a priori
power, this may be a value chosen as being of practical or theoretical interest
or we may calculate power for one or more of Cohen’s conventional sizes of
0.2, 0.5, and 0.8. After conducting the experiment, we have the additional
option of calculating power for δ equal to the observed d. In addition, we can
calculate the CI for δ based on our data. Every δ value in that interval is an
effect size value compatible with our data, in the sense discussed earlier. Each
of those δ values can be used to find a power value, so from our CI for δ we
can derive a range of values for power. This is simply the set of power values
that correspond to the set of δ values that is the CI for δ.

Note that this set of power values should not be regarded as a “CI for
power” because a CI is an interval estimate for a parameter that has (in our
simple cases) a single true, but unknown, value. Power is best thought of not
as such a parameter but as a descriptive feature of an experiment that has par-
ticular characteristics (including n, design, σ, and α). Our focus should be on
how power varies with such characteristics and not on a quest for a supposed
single “true” value.

In addition to giving the CI for δ, CIdelta gives the corresponding range of
power values. Exploration is likely to lead to the conclusion that, for a broad
range of realistic data sets, this range is surprisingly wide. Thus, in many
cases our results may reasonably have arisen from a small population effect
size and low power or a large effect size and power near or equal to 1.0. This
uncertainty may increase the attractiveness of CI width as an index of the pre-
cision of an experiment.

CIs and Precision

Jacob Cohen, a highly influential reformer, for more than two decades
worked hard to encourage psychologists to calculate and think about statisti-
cal power (e.g., Cohen, 1990, 1994). His book (Cohen, 1969, 1988) intro-
duced Cohen’s δ, which was important for the development of meta-analysis;
it remains a classic reference for power analysis. Cohen argued that psychol-
ogists seldom realized how low their statistical power usually was, and so
NHST results were misinterpreted, and much research effort was wasted. If
power were routinely estimated and considered at the research planning stage
and routinely reported as part of the analysis of results, psychological re-
search could be much improved.
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In 1994, N. R. Thomason asked Cohen why he had chosen statistical
power, rather than the use of CIs, as the focus of his reform efforts and why he
had persisted with power for so long. Thomason (personal communication,
February 26, 2001) reported Cohen’s response by saying that

only someone who was into the NHST mindset could fully understand why he
pressed on with power for so many years. It is a way of thinking that is so con-
ceptually attractive that it took him years to free himself from it. However, he
had come to believe that adopting CIs is a higher priority than increased use of
power and that it would have been better if he had from the start chosen CIs as
the focus of his efforts.

CI width reflects a number of aspects of the precision of a study, including
the amount of variability in the population, the sample size and thus sampling
error, and the amount of error in the dependent variable. Statistical power is
also influenced by all these factors but is defined relative to an effect size that
is set by the value of the population parameter specified by the alternative hy-
pothesis. As noted earlier, power is strongly influenced by this effect size. For
example, a wide CI might be associated with high power simply because the
chosen effect size, set by the alternative hypothesis, is very large. By contrast,
effect size has no systematic influence on the width of the original units CI.

Power is defined in terms of and cannot be divorced from NHST. By being
tied to a particular value of the population parameter—a particular effect
size—and given the desirability of de-emphasizing NHST, power has distinct
disadvantages. CI width is likely to become recognized by social scientists as
a more generally useful guide to the precision of studies with simple designs
like those we discuss in this article. Steiger and Fouladi (1997) supported use
of CI width as an index of precision but cautioned that “the width of a confi-
dence interval is generally a random variable, subject to sampling fluctua-
tions of its own, and may be too unreliable at small sample sizes to be useful
for some purposes” (p. 254).

Our Excel simulations provide a number of ways of exploring the rela-
tions between CI width and important features of an experiment, including
population variance, sample size, design (our three cases), and whether origi-
nal or standardized units are the focus. We hope these can help develop appre-
ciation of CI width as a broadly useful indicator of precision.

Case 2: Two Independent Groups

In Case 2, we have two independent random samples from normal popula-
tions, of size n1 and n2, and are interested in the difference between the group
means. We need give only an outline presentation here because the rationale
is closely analogous to that for Case 1. It is worth comparing the formulas
given here with the corresponding Case 1 formulas.
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Case 2, Original Units

Consider, for original scores, that

( ) ( )
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µ µ (19, cf. 1)

where X1 and X 2 are the sample means, S is an estimate of σ pooled from the
two groups (see below), and (µO1 – µO2) is a reference value for the difference
between the population means. In almost all cases, this reference value is set
to zero; this corresponds to testing a null hypothesis of no difference between
the two population means. In our discussion of Case 2, we will consider only
the situation in which (µO1 – µO2) = 0.

Now, σ is the population standard deviation, which we assume to be the
same in the two populations. The pooled estimate of σ may be calculated
from
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where s1 and s2 are the sample standard deviations (with n1 – 1 and n2 – 1 in
their respective denominators). The standard error of the difference between
the means is s n n1 11 2+ , which becomes s n2 when n1 = n2.

The original units 95% CI for the difference between the means may be
calculated as

( ) ( . ) .x x t s n nn n1 2 1 2 2 1 20975 1 1− ± × ++ − (21, cf. 6)

COMPARISONS OF CASES 1, 2, AND 3

Cases 1, 2, and 3 involve the estimation of different parameters and so are
not directly comparable, but they are sufficiently analogous for comparisons
of some quantities to be of interest. Comparison of Cases 2 and 3 (see below)
are of most practical interest because in many situations, either might be
used, and the researcher needs to decide between them.

For Case 2 with equal-sized groups (and using n = n1 = n2), the stan-
dard error of the difference between the means is s n2 . Other things

being the same, this is 2 or 1.41 times as large as the standard error of the
single mean in Case 1. Consequently, the Case 2 CI is wider than the Case 1
CI by a similar factor, although the larger df in Case 2 has an influence—usu-
ally small—in the opposite direction. This comparison is, of course, most
meaningful when the Case 1 data are a set of difference scores.
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An Original Units Example, Case 2

Figure 10 shows dot plots of the data points in two independent groups, the
sample means and their individual CIs, and the CI for the population mean of
the difference between the means. (You can use the Case 2 sheet in
CIoriginal to make these calculations and generate a similar display for your
own data.) Variations on Figure 10 (or explorations with CIoriginal) illus-
trate some basic features of the original units CI for the population mean, in-
cluding the following:

• The CI is centered on the sample difference between the means and is symmetric.
• Higher chosen C requires a wider CI.
• Larger sample sizes give a shorter CI.
• CIs for the difference between the means in Case 2 are generally wider than the

CI for the mean of either of the groups.
• The Case 1 conclusion that many realistic data sets in the social sciences give

95% CIs that are disappointingly wide applies also to Case 2.

Case 2, Standardized Units

The population standardized effect size can be defined as

δ µ µ
σ

= −1 2 , (22, cf. 9)
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Figure 10. A part image from the Case 2 sheet of CIoriginal for two independent groups.
Note. In this case, n1 = 14 and n2 = 16. For each group, the dot plot (open circles), mean (filled circle), and 95%
CI for µ1 or µ2 is shown. The lower axis is in original units but with zero aligned with x2 , the Group 2 mean, so
that it indicates (x1 – x2), the difference between the means. The filled triangle is this difference, referred to the
lower axis, and its heavy bars are the CI for (µ1 – µ2), the difference between the population means. Note that
the CI for the difference is, as usual, longer than the CI for either single group.
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where µ1 and µ2 are the two population means. (Recall that we are assuming
throughout the Case 2 discussion that (µO1 – µO2), the comparison value for
the difference between the population means, is zero.)

The sample effect size can be calculated as

d
x x

s
= −1 2 , (23, cf. 10)

where s is an estimate of the pooled population standard deviation, calculated
using Equation 20.

The conventional t statistic for testing the hypothesis that the difference
between the population means is zero is

t
x x

s n n
= −

+
1 2

1 21 1
. (24, cf. 11)

Combination of the last two formulas gives

d t
n n

= +1 1

1 2

,
(25, cf. 12)

which becomes d = t n2 when the two samples are of equal size. Again, this
is a simple and appealing relation that is worth remembering.

The noncentrality parameter for the distribution of t is

∆ = −
+

µ µ
σ

1 2

1 21 1n n
. (26, cf. 15)

Therefore, as in the one sample case, there is a simple relation between δ
and ∆:

δ = +∆ 1 1

1 2n n
.

(27, cf. 16)

The Method 2 argument for finding a CI for δ for Case 2 is essentially the
same as that for Case 1. Use the Case 2 sheet of CIdelta to see two noncentral
t distributions move until the tail conditions (cf. Equation 18 and Figure 6) are
satisfied and the ∆ values, and thus the δ values, are found for the lower and
upper ends of the CI.

Exploration with CIdelta leads to conclusions that are very similar to
those for Case 1 (a single group) but with the CIs in Case 2 (two independent
groups) being as we would expect generally wider than those in Case 1.
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Case 3: Single Group, Repeated Measure

In Case 3, we have two measures from each of n experimental units and are
interested in the mean of the n differences, more specifically how far this
mean is from some reference value, most commonly zero. We may have a
pre- and postmeasure from each of n participants, or the experimental units
may be pairs of participants who are matched in some natural way (e.g.,
parent and child) or that have been assigned to a pair because, for example,
they have similar scores on some relevant matching variable or variables.
We assume the difference scores to be a random sample from a normal
population.

Case 3, Original Units

In original units, the effect size is simply the mean of the n differences. In
fact, for original units, Case 3 reduces completely to Case 1 by the simple
expedient of taking the difference scores as the data. All the discussion and
original score formulas given above for Case 1 are applicable: Simply apply
them to the differences. All the simulations and conclusions based on the
ESCI tools for original scores also apply. The Case 3 sheet in CIoriginal cal-
culates the differences but otherwise is essentially the same as the Case 1
sheet.

To the extent that matching or the use of repeated measures leads to the
two measures being positively correlated, Case 3 is a sensitive design.
This sensitivity arises because the width of the original score CI for mean
difference—the original score effect size—is based on the variability of the
differences and not on the variability of the n scores on either measure. To the
extent the measures are positively correlated, the variability of differences is
smaller than this latter variability. Other things being equal, the CI will be
narrower for Case 3 than for Cases 1 or 2.

We noted earlier that the CI for Case 2 is wider than the CI for Case 1 by a
factor of approximately 2. Therefore, because Case 3 reduces to a Case 1
sample of difference scores, the CI for Case 3 will at worst be narrower than
the CI for Case 2 by a factor of approximately 2, other things being equal.
To the extent that the measures in Case 3 are positively correlated, the Case 3
CI width will be narrower still. This is an important consideration when
choosing between Case 2 and 3 designs, in situations when either may be
used.

Case 3, Standardized Units

Unfortunately, the situation is more complicated when we turn to stan-
dardized units. Any standardization requires choice of an appropriate stan-
dard deviation to use in the denominator as the reference unit. For Case 3, we
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could standardize the mean difference by dividing it by sD, the standard devi-
ation of differences, or by s, the standard deviation of the measures them-
selves. (We assume the population variance to be the same for each measure,
just as in Case 2 we assumed a common σ for the two populations.) We could
analyze both ways if we judged this appropriate. Glass, McGaw, and Smith
(1981, pp. 116-117), among others, made clear that the choice should be
based on substantive considerations in the application area. They noted that
the choice is crucial because sD is often in practice considerably smaller than
s, and so a standardized effect size based on sD will be considerably larger
than one based on s.

Cohen (1988, pp. 48-49) discussed this issue and noted that “If the investi-
gator is content” (p. 48) to choose sD, then Case 3 reduces fully to Case 1 for
standardized units as well as for original units. However, Cohen expressed a
general preference for using s as the basis for standardization.

Note that the question of standardization of the effect size is different from
choice of denominator for a statistical significance test. Whichever standard
deviation is used in the estimate of δ, it is appropriate to use sD in the denomi-
nator of the conventional paired t test of the hypothesis of zero mean
difference.

STANDARDIZATION USING sD

A researcher who decides, for a particular Case 3 example, that standard-
ization using sD is appropriate is judging that the mean difference can best be
assessed in terms of the variability of difference scores. Such an example
would need no further comment because all the discussion, formulas, and
ESCI simulations given earlier for Case 1 would apply, for standardized units
as well as original units. These could all simply be applied to the differences.

STANDARDIZATION USING s

It is easy to find examples that align with Cohen’s (1988, p. 49) preference
in that standardization against σ (or s, our best estimate of σ) is appropriate.
Suppose we use a verbal ability test known to have µ = 100 and σ = 15 (so here
we use σ itself rather than an estimate) in the relevant population, and we
investigate the effect of having a healthy breakfast on test scores. A group of n
children are tested on parallel forms of the test, each child being tested on dif-
ferent days with and without a healthy breakfast—no doubt we would coun-
terbalance the order of testing. We calculate our mean difference to be 4.1
points in favor of the healthy breakfast. It would seem most useful to assess
the mean difference against σ and report an advantage of d = 4.1/15 = 0.27 (in
Cohen’s terms, a small effect). The calculated standard deviation of differ-
ence scores may be relatively small, say 7.7, and this value would be used,
quite correctly, to calculate the original score CI for the effect (and the t value
if we wished to conduct a significance test). However, using this value to
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standardize the effect size (which gives 4.1/7.7 = 0.53) probably does not
make substantive sense: Our natural reference for thinking about verbal abil-
ity scores is σ = 15 and not the variability in differences.

Choosing σ for standardization, as is appropriate in at least many Case 3
situations, we can define the standardized effect size as

δ µ
σ

= D (28, cf. 9, 22)

and can calculate the sample mean difference by using

d
x

s
D= , (29, cf. 10, 23)

where µD is the population mean difference; σ is the population variance of
the measures, assumed the same for each; and x D is the mean difference cal-
culated from the data. The denominator s, our best estimate of σ, may be the
standard deviation of the n premeasures or, probably better, the standard de-
viation of the n means of pre- and postmeasures for each pair.

The major difficulty with the Case 3 effect size standardized against σ
now becomes apparent. The numerator x D is normally distributed with stan-
dard deviation σD � n, whereas the denominator s is closely related to a χ2

distribution with the involvement of σ. Because σD is, in general, not equal to
σ, d does not follow a t distribution, central or noncentral. Because the distri-
bution of d is so complex, we cannot provide a formula or simulation for
determining an accurate CI for this standardized effect size for Case 3.

One approach to the problem is based on the relation (Hays, 1988, pp. 313-
314)

σD
2 = 2σ2 (1 – ρ), (30)

where ρ is the population correlation between the two measures. As we
would expect, ρ = 0 reduces to Case 2. If ρ is large, then σD is small, and so the
CI is short and Case 3 is, again as we would expect, especially advantageous.
Both Cohen (1988, pp. 48-49) and Glass et al. (1981, pp. 116-118) suggested
use of this relation to transform an estimate of σ2 to an estimate of σ D

2 and so
in effect to reduce Case 3 to Case 1. Because in practice that would almost al-
ways require estimation of ρ from the data and thus involvement of a further
source of sampling error, we do not pursue this approach further.

Overview and Conclusions

Two important aspects of reform of statistical practice in the social sci-
ences are (a) increased use of CIs and (b) increased use of effect size mea-
sures. It is important to combine the two and consider CIs for effect sizes.
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However, these have received relatively little attention, at least in the case of
the simple standardized effect size measure, Cohen’s δ. One reason for this
is, no doubt, that CIs for δ involve noncentral t distributions, which have been
little known to many social science researchers.

It is important for statistical reform that techniques for calculating and re-
porting CIs for effect size measures are widely available and understood. As a
contribution to this goal, we have presented a discussion centered on CIs for
Cohen’s δ. We considered four general ways that CIs are valuable:

• They give point and interval information that is easily understood, and there-
fore they facilitate substantive interpretation.

• The link between CIs and NHST can help the learning and understanding of
both.

• CIs support meta-analysis and meta-analytic thinking. Promoting these is a
further important aim of reform.

• CI width gives information about precision that may be more useful and acces-
sible than a statistical power value.

We used Case 1, the single-sample design, as the context for most of the
discussion and considered measures in original units as well as the standard-
ized measure Cohen’s δ. To discuss CIs for δ, we needed to describe
noncentral t distributions and their properties. Then, we extended the discus-
sion beyond CIs to include simple meta-analysis and statistical power. We
gave briefer discussions of Case 2, the two-independent-samples design, and
Case 3, the single-sample, repeated measures design.

A key factor is that δ involves a distance measure (mean or mean differ-
ence) in the numerator and a standard deviation in the denominator, and in
practice both these quantities need to be estimated from the data. This is the
reason noncentral t distributions are required. Investigation of the CI for µ
and CI for δ led to a number of conclusions, including the following:

• These two CIs are calculated from the same data but are quite different: They
estimate different parameters and are expressed on different scales. Judg-
ment is needed to guide the choice to use one, the other, or both in a particular
situation.

• Calculating the CI for δ is not straightforward and usually relies on software
that applies an iterative algorithm to find the ends of the CI.

• The CI for δ requires specification of a comparison value—for example, µ0 for
Case 1—and the value chosen has a large influence on the CI for δ but no influ-
ence on the CI for µ.

• Noncentral t is needed if calculation of power is to be accurate, unless σ is
known.

• In some circumstances, when there is a real effect but power is relatively low,
power calculations show that “highly statistically significant” (p < .001) re-
sults will not be rare. Some researchers may find this surprising.
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• Simple meta-analysis can be carried out using either original or standardized
units. Effect sizes are the most influential factor.

• Case 2, the two-independent-samples design, gives conclusions similar to
those for Case 1, but, other things being equal, CIs are generally wider.

• Case 3, the single-group repeated measures design, is attractive where it is ap-
plicable because it can give short CIs. The higher the correlation between the
two measures, the shorter the CI for the mean of the differences.

• In Case 3, δ may be based on standardization by either σD or σ. If σD is judged
appropriate, Case 3 reduces simply to Case 1, but if σ is considered appropri-
ate, the sampling distribution of d is complex, and we do not present an exact
procedure for calculating the CI for δ.

We illustrate the discussion throughout by reference to the ESCI software,
which can be used to calculate CIs in original units and CIs for δ, as well as
power and basic meta-analysis, for a number of simple situations. We hope
especially that explorations using this software will assist researchers and
students to come to understand better the concepts touched on in this article.
Many of these are at the heart of reform of statistical practice, which currently
needs to be a central concern across the social sciences.

Note

1. References in bold are to components of Exploratory Software for Confidence Intervals
(ESCI, pronounced “esky”), our set of tools that run under Microsoft Excel. These provide illus-
trations of concepts central to this article, interactivity that allows user exploration, and in some
cases the facility to enter your own data and to calculate and display confidence intervals on these
data. To obtain ESCI, see www.psy.latrobe.edu.au/esci.
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