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Abstract

Background: As more and more researchers are turning to big data for new opportunities of biomedical discoveries, machine
learning models, as the backbone of big data analysis, are mentioned more often in biomedical journals. However, owing to the
inherent complexity of machine learning methods, they are prone to misuse. Because of the flexibility in specifying machine
learning models, the results are often insufficiently reported in research articles, hindering reliable assessment of model validity
and consistent interpretation of model outputs.
Objective: To attain a set of guidelines on the use of machine learning predictive models within clinical settings to make sure
the models are correctly applied and sufficiently reported so that true discoveries can be distinguished from random coincidence.
Methods: A multidisciplinary panel of machine learning experts, clinicians, and traditional statisticians were interviewed, using
an iterative process in accordance with the Delphi method.
Results: The process produced a set of guidelines that consists of (1) a list of reporting items to be included in a research article
and (2) a set of practical sequential steps for developing predictive models.
Conclusions: A set of guidelines was generated to enable correct application of machine learning models and consistent reporting
of model specifications and results in biomedical research. We believe that such guidelines will accelerate the adoption of big
data analysis, particularly with machine learning methods, in the biomedical research community.
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Introduction

Big data is changing every industry. Medicine is no exception.
With rapidly growing volume and diversity of data in health
care and biomedical research, traditional statistical methods
often are inadequate. By looking into other industries where
modern machine learning techniques play central roles in dealing
with big data, many health and biomedical researchers have
started applying machine learning to extract valuable insights
from ever-growing biomedical databases, in particular with
predictive models [1,2]. The flexibility and prowess of machine
learning models also enable us to leverage novel but extremely
valuable sources of information, such as wearable device data
and electronic health record data [3].

Despite its popularity, it is difficult to find a universally
agreed-upon definition for machine learning. Arguably, many
machine learning methods can be traced back as far as 30 years
ago [4]. However, machine learning started making a broad
impact only in the last 10 years. The reviews by Jordan and
Mitchell [5] and Ghahramani [6] provide accessible overviews
for machine learning. In this paper, we focus on machine
learning predictive methods and models. These include random
forest, support vector machines, and other methods listed in
Multimedia Appendix 1. They all share an important difference
from the traditional statistical methods such as logistic regression
or analysis of variance—the ability to make accurate predictions
on unseen data. To optimize the prediction accuracy, often the
methods do not attempt to produce interpretable models. This
also allows them to handle a large number of variables common
in most big data problems.

Accompanying the flexibility of emerging machine learning
techniques, however, is uncertainty and inconsistency in the
use of such techniques. Machine learning, owing to its intrinsic
mathematical and algorithmic complexity, is often considered
a “black magic” that requires a delicate balance of a large
number of conflicting factors. This, together with inadequate
reporting of data sources and modeling process, makes research
results reported in many biomedical papers difficult to interpret.
It is not rare to see potentially spurious conclusions drawn from
methodologically inadequate studies [7-11], which in turn
compromises the credibility of other valid studies and
discourages many researchers who could benefit from adopting
machine learning techniques.

Most pitfalls of applying machine learning techniques in
biomedical research originate from a small number of common
issues, including data leakage [12] and overfitting [13-15],
which can be avoided by adopting a set of best practice
standards. Recognizing the urgent need for such a standard, we
created a minimum list of reporting items and a set of guidelines
for optimal use of predictive models in biomedical research.

Methods

Panel of Experts
In 2015, a multidisciplinary panel was assembled to cover
expertise in machine learning, traditional statistics, and
biomedical applications of these methods. The candidate list

was generated in two stages. The panel grew from a number of
active machine learning researchers attending international
conferences including the Asian Conference on Machine
Learning, the Pacific Asia Conference on Knowledge Discovery
and Data Mining, and the International Conference on Pattern
Recognition. The responders were then asked to nominate
additional researchers who apply machine learning in biomedical
research. Effort was exercised to include researchers from
different continents. Researchers from the list were approached
through emails for joining the panel and/or recommending
colleagues to be included. Two declined the invitation.

The final panel included 11 researchers from 3 institutions on
3 different continents. Each panelist had experience and
expertise in machine learning projects in biomedical applications
and has learned from common pitfalls. The areas of research
expertise included machine learning, data mining, computational
intelligence, signal processing, information management,
bioinformatics, and psychiatry. On average, each panel member
had 8.5 years’ experience in either developing or applying
machine learning methods. The diversity of the panel was
reflected by the members’ affiliation with 3 different institutions
across 3 continents.

Development of Guidelines
Using an iterative process, the panel produced a set of guidelines
that consists of (1) a list of reporting items to be included in a
research article and (2) a set of practical sequential steps for
developing predictive models. The Delphi method was used to
generate the list of reporting items.

The panelists were interviewed with multiple iterations of
emails. Email 1 asked panelists to list topics to be covered in
the guidelines. An aggregated topic list was generated. Email
2 asked each panelist to review the scope of the list and state
his or her recommendation for each topic in the aggregated list.
Later iterations of email interviews were organized to evolve
the list until all experts agreed on the list. Because of the logistic
complexity of coordinating the large panel, we took a
grow-shrink approach. In the growing phase, all suggested items
were included, even an item suggested by only 1 panelist. In
the shrinking phase, any item opposed by a panelist was
excluded. As it turned out, most items were initially suggested
by a panelist but seconded by other panelists, suggesting the
importance of the group effort for covering most important
topics.

The practical steps were developed by machine learning experts
in their respective areas and finally approved by the panel.
During the process, the panelists consulted extensively the broad
literature on machine learning and predictive model in particular
[16-18].

Results

A total of 4 iterations of emails resulted in the final form of the
guidelines. Email 1 generated diverse responses in terms of
topics. However the final scope was generally agreed upon. For
email 2, most panelists commented on only a subset of topics
(mostly the ones suggested by themselves). No recommendations
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generated significant disagreement except for minor wording
decisions and quantifying conditions.

The final results included a list of reporting items (Tables
1-5,Textboxes 1-4, and Figure 1) and a template flowchart for
reporting data used for training and testing predictive models,
including both internal validation and external validation (Figure
2).

Recognizing the broad meaning of the term “machine learning,”
we distinguish essential items from desirable items (using
appropriate footnotes in the tables). The essential items should
be included in any report, unless there is a strong reason
indicating otherwise; the desirable items should be reported
whenever applicable.

Figure 1. Steps to identify the prediction problem.
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Table 1. Items to include when reporting predictive models in biomedical research: title and abstract.

Checklist itemTopicSectionItem
number

Identify the report as introducing a predictive modelNature of studyTitle1

Background
Objectives
Data sources
Performance metrics of the predictive model or models, in both point estimates and confidence
intervals
Conclusion including the practical value of the developed predictive model or models

Structured summaryAbstract2

Table 2. Items to include when reporting predictive models in biomedical research: introduction section.

Checklist itemTopicItem
number

Identify the clinical goal
Review the current practice and prediction accuracy of any existing models

Rationale3

State the nature of study being predictive modeling, defining the target of prediction
Identify how the prediction problem may benefit the clinical goal

Objectives4

Figure 2. Information flow in the predictive modelling process.
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Table 3. Items to include when reporting predictive models in biomedical research: methods section.

Checklist itemTopicItem
number

Identify the clinical setting for the target predictive model.
Identify the modeling context in terms of facility type, size, volume, and duration of available data.

Describe the setting5

Define a measurement for the prediction goal (per patient or per hospitalization or per type of out-
come).

Determine that the study is retrospective or prospective.a

Identify the problem to be prognostic or diagnostic.
Determine the form of the prediction model: (1) classification if the target variable is categorical,
(2) regression if the target variable is continuous, (3) survival prediction if the target variable is the
time to an event.
Translate survival prediction into a regression problem, with the target measured over a temporal
window following the time of prediction.
Explain practical costs of prediction errors (eg, implications of underdiagnosis or overdiagnosis).

Defining quality metrics for prediction models.b

Define the success criteria for prediction (eg, based on metrics in internal validation or external
validation in the context of the clinical problem).

Define the prediction problem6

Identify relevant data sources and quote the ethics approval number for data access.
State the inclusion and exclusion criteria for data.
Describe the time span of data and the sample or cohort size.
Define the observational units on which the response variable and predictor variables are defined.
Define the predictor variables. Extra caution is needed to prevent information leakage from the re-
sponse variable to predictor variables.c

Describe the data preprocessing performed, including data cleaning and transformation. Remove
outliers with impossible or extreme responses; state any criteria used for outlier removal.
State how missing values were handled.
Describe the basic statistics of the dataset, particularly of the response variable. These include the
ratio of positive to negative classes for a classification problem and the distribution of the response
variable for regression problem.
Define the model validation strategies. Internal validation is the minimum requirement; external
validation should also be performed whenever possible.
Specify the internal validation strategy. Common methods include random split, time-based split,
and patient-based split.
Define the validation metrics. For regression problems, the normalized root-mean-square error
should be used. For classification problems, the metrics should include sensitivity, specificity, pos-

Prepare data for model building7

itive predictive value, negative predictive value, area under the ROCd curve, and calibration plot
[19].e

For retrospective studies, split the data into a derivation set and a validation set. For prospective
studies, define the starting time for validation data collection.

Identify independent variables that predominantly take a single value (eg, being zero 99% of the
time).
Identify and remove redundant independent variables.

Identify the independent variables that may suffer from the perfect separation problem.f

Report the number of independent variables, the number of positive examples, and the number of
negative examples.
Assess whether sufficient data are available for a good fit of the model. In particular, for classification,
there should be a sufficient number of observations in both positive and negative classes.
Determine a set of candidate modeling techniques (eg, logistic regression, random forest, or deep
learning). If only one type of model was used, justify the decision for using that model.g

Define the performance metrics to select the best model.
Specify the model selection strategy. Common methods include K-fold validation or bootstrap to
estimate the lost function on a grid of candidate parameter values. For K-fold validation, proper
stratification by the response variable is needed.h

For model selection, include discussion on (1) balance between model accuracy and model simplic-
ity or interpretability, and (2) the familiarity with the modeling techniques of the end user.i

Build the predictive model8
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aSee Figure 1.
bSee some examples in Multimedia Appendix 2.
cSee Textbox 1.
dROC: receiver operating characteristic.
eAlso see Textbox 2.
fSee Textbox 3.
gSee Multimedia Appendix 1 for some common methods and their strengths and limitations.
hSee Textbox 4.
iA desirable but not mandatory item.

Table 4. Items to include when reporting predictive models in biomedical research: results section.

Checklist itemTopicItem
number

Report the predictive performance of the final model in terms of the validation metrics specified in
the methods section.
If possible, report the parameter estimates in the model and their confidence intervals. When the
direct calculation of confidence intervals is not possible, report nonparametric estimates from
bootstrap samples.
Comparison with other models in the literature should be based on confidence intervals.
Interpretation of the final model. If possible, report what variables were shown to be predictive of
the response variable. State which subpopulation has the best prediction and which subpopulation
is most difficult to predict.

Report the final model and performance9

Table 5. Items to include when reporting predictive models in biomedical research: discussion section.

Checklist itemTopicItem
number

Report the clinical implications derived from the obtained predictive performance. For example,
report the dollar amount that could be saved with better prediction. How many patients could benefit
from a care model leveraging the model prediction? And to what extent?

Clinical implications10

Discuss the following potential limitations:
• Assumed input and output data format

• Potential pitfalls in interpreting the modela

• Potential bias of the data used in modeling
• Generalizability of the data

Limitations of the model11

Report unexpected signs of coefficients, indicating collinearity or complex interaction between
predictor variablesa

Unexpected results during the experi-
ments

12

aDesirable but not mandatory items.

Textbox 1. Data leakage problem.

Leakage refers to the unintended use of known information as unknown. There are two kinds of leakage: outcome leakage and validation leakage. In
outcome leakage, independent variables incorporate elements that can be used to easily infer outcomes. For example, a risk factor that spans into the
future may be used to predict the future itself. In the validation leakage, ground truth from the training set may propagate to the validation set. For
example, when the same patient is used in both training and validation, the future outcome in the training may overlap with the future outcome in the
validation. In both leakage cases, the performance obtained is overoptimistic.

Textbox 2. Calibration.

Calibration of a prediction model refers to the agreement between the predictions made by the model and the observed outcomes. As an example, if
the prediction model predicts 70% risk of mortality in the next 1 year for a patient with lung cancer, then the model is well calibrated if in our dataset
approximately 70% of patients with lung cancer die within the next 1 year.

Often, the regularized prediction may create bias in a model. Therefore, it is advisable to check for the calibration. In the case of regression models,
the calibration can be easily assessed graphically by marking prediction scores on the x-axis and the true outcomes on the y-axis. In the case of binary
classification, the y-axis has only 0 and 1 values; however, smoothing techniques such as LOESS algorithm may be used to estimate the observed
probabilities for the outcomes. In a more systematic way, one can perform the Hosmer-Lemeshow test to measure the goodness of fit of the model.
The test assesses whether the observed event rates match the predicted event rates in subgroups of the model population.
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Textbox 3. Perfect separation problem.

When a categorical predictor variable can take an uncommon value, there may be only a small number of observations having that value. In a
classification problem, these few observations by chance may have the same response value. Such “perfect” predictors may cause overfitting, especially
when tree-based models are used. Therefore, special treatment is required.

One conservative approach is to remove all dummy variables corresponding to rare categories. We recommend a cutoff of 10 observations.

For modeling methods with feature selection built in, an alternative approach is to first fit a model with all independent variables. If the resulting
model is only marginally influenced by the rare categories, then the model can be kept. Otherwise, the rare categories showing high “importance”
score are removed and the model refitted.

Textbox 4. K-fold cross-validation.

K-fold validation refers to the practice of splitting the derivation data into K equal parts. The model is then trained on K−1 parts and validated on the
remaining part. The process is repeated K times. The average results for K-folds are then reported. For small classes and rare categorical factors,
stratified K-fold splitting should be used to ensure the equal presence of these classes and factors in each fold.

Discussion

We have generated a set of guidelines that will enable correct
application of machine learning models and consistent reporting
of model specifications and results in biomedical research.

Because of the broad range of machine learning methods that
can be used in biomedical applications, we involved a large
number of stakeholders, as either developers of machine learning
methods or users of these methods in biomedicine research.

The guidelines here cover most popular machine learning
methods appearing in biomedical studies. We believe that such
guidelines will accelerate the adoption of big data analysis,

particularly with machine learning methods, in the biomedical
research community.

Although the proposed guidelines result from a voluntary effort
without dedicated funding support, we still managed to assemble
a panel of researchers from multiple disciplines, multiple
institutions, and multiple continents. We hope the guidelines
can result in more people contributing their knowledge and
experience in the discussion.

As machine learning is a rapidly developing research area, the
guidelines are not expected to cover every aspect of the
modeling process. The guidelines are expected to evolve as
research in biomedicine and machine learning progresses.
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