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Although intraclass correlation coefficients (ICCs) are commonly used in 
behavioral measurement, psychometrics, and behavioral genetics, procedures 
available for forming inferences about ICCs are not widely known. Following 
a review of the distinction between various forms of the ICC, this article 
presents procedures available for calculating confidence intervals and con­
ducting tests on ICCs developed using data from one-way and two-way ran­
dom and mixed-effect analysis of variance models. 

To measure the bivariate relation of variables 
representing different measurement classes, one 
must use an interclass correlation coefficient, of 
which there is but one in common use, the Pearson 
r. Thus the Pearson r is used for measuring the 
relation of IQ points (a class of measurement rep­
resenting aptitude) to grade point averages (a class 
of measurement representing achievement) or the 
relation of measurements in the length class (e.g., 
inches) to measurements in the weight class (e.g., 
pounds). Such measurements share neither their 
metric nor variance. But when one is interested 
in the relationship among variables of a common 
class, which means variables that share both their 
metric and variance, intraclass correlation coeffi­
cients (ICCs) are alternative statistics for measur­
ing homogeneity, not only for pairs of measure­
ments but for larger sets of measurements as 
well.u 
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The most fundamental interpretation of an ICC 
is that it is a measure of the proportion of a vari­
ance (variously defined) that is attributable to ob­
jects of measurement, often called targets (e.g., 
Shrout & Fleiss, 1979). The objects might be gym­
nastics contestants, litters, twin pairs, or students, 
and the corresponding measurements might be 
judges' ratings, IQs of the twins, weights of the 
littermates, or test scores of the students. Com­
mon examples of ICCs in the literature are 
twin correlations, Cronbach's alpha, heritability 
coefficients, Kish's rate of homogeneity (Kish, 
1965), and measures of reliability that arise from 
either classical test theory or generalizability 
theory (Cronbach, Gieser, Nanda, & Rajarat­
nam, 1972). 

1 Interpretation of the meaning of the term class in this 
contrast of interclass and intraclass correlations follows 
Fisher (e.g., 1938, pp. 217-218). Frequently, however, 
one sees interpretations (e.g., Haggard, 1958, passim; 
Harris, 1913, passim) in which class is used to refer to 
the test takers, persons, families, or other entities that 
serve as objects of measurement in a correlational analy­
sis. Fisher's usage is preferable in that it emphasizes 
that the correlation is among measures constituting a 
class because they have a common metric and variance, 
although even Fisher refers ambiguously on occasion 
to objects of measurement as "classes" (e.g., 1938, p. 
227). Genuine confusion exists, therefore, on this se­
mantic issue. 

2 Fagot (1993) has proposed a family of coefficients 
for measuring the association of variables that offers 
yet additional alternatives to inter- and intraclass corre­
lations. 
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Despite the widespread use of ICCs in psychol­
ogy, textbook coverage of them is so limited that 
procedures for forming inferences about ICCs are 
seldom mentioned; when they are, the only proce­
dures given are those based on Fisher's normaliz­
ing transformation of p, the z' transformation (e.g., 
Haggard, 1958). These procedures are the best 
known, but they are not the best available. The 
primary purpose of this article is to provide a ~e­
view of options to Fisher's approach for determm­
ing confidence intervals and conducting signifi­
cance tests. The procedures are limited to ICCs 
developed on data with just one or two sources of 
systematic variance (one-way and two-way mod­
els), because these are the only ICCs for which 
confidence intervals and test statistics have been 
derived. 

The first step in using any of the procedures 
described here is to specify an additive variance 
model appropriate to one's sample data. This is 
important because the modern method for calcu­
lating ICCs, originated by Harris (1913), uses 
mean squares from an analysis of variance, so one 
must specify a model for the sample data in order 
to know which analysis to perform. The five mod­
els to be considered here are given as Cases 1, 2, 
2A, 3, and 3A in Table 1. The case labels 1, 2, and 
3 are taken from Shrout and Fleiss (1979), who 
did not formally consider Cases 2A and 3A. Read­
ers who are not yet familiar with intraclass correla­
tions and the work of Shrout and Fleiss may safely 
ignore Table 1 for the moment and proceed with 
the narrative discussion. 

Selecting the Appropriate Model 

Common to any model for which an ICC is 
defined will be a factor that represents randomly 
selected objects of measurement (test takers, sub­
jects, litters, twinships, etc.) as a source of variance. 
From a design point of view, this means that data 
sets used in calculating ICCs require multiple mea­
surements on these objects. Because the objects 
are randomly selected, they constitute a random 
factor in the design. A convenient arrangement 
for the measurements is the one given by Bartko 
(1976) and reproduced in Table 2, where i is used 
as the subscript for the randomly chosen objects 
of measurement (which vary in number from 1 to 
n) and j the subscript for multiple observations 
(which vary in number from 1 to k). 

One-Way Random Effects Model 

For the simplest case, assume that the random 
row variable in Table 2 represents the only system­
atic source of variance. This would be the case 
when data are collected in such a way that their 
ordering on j is irrelevant. In common parlance, 
this represents a nested design because unordered 
observations are nested within objects. As an ex­
ample, consider behavioral genetics data used in 
assessing familial resemblance. When looking at 
sibships of size k, one has k measures (scores on 
twins, say, where k = 2), but there is no way to 
assign these scores to measurement categories; 
thus their assignment to j or j' is random. In such 
cases as this, the one-way analysis of variance 
model given as Case 1 in Table 1 can be used to 
represent the data. The same one-way model could 
be used for data reflecting the measurement of 
persons in which each observation X;i was made 
under unique measurement conditions, a situation 
that creates what are called "unmatched" data in 
generalizability theory (Cronbach et al., 1972). In 
each of these examples, r; represents the random 
effects of the row variable ( twinships in the one 
case and persons in the other), and W;i represents 
random residual effects associated with the idio­
syncracies of the measurement conditions, their 
interaction with the row variable, and measure­
ment error. Assumptions concerning these effects 
are given in Table 1 along with other assumptions 
relevant to the models. 

As shown in Table 3, an analysis of variance on 
data conforming to the one-way model yields two 
mean squares, one for object of measurement (the 
row variable in the Table 2 data matrix) and one 
for residual sources of variance. By tradition the 
latter of these is labeled MSw, for mean square 
within. We will use the label MSR (mean square 
rows) for the former. The expectations for these 
mean squares are given in Table 3. 

Two-Way Models 

For cases in which the k observations per object 
of measurement differ in some systematic way, a 
two-way model can be used to represent the data. 
The reason is that there is a systematic source of 
variance associated with columns as well as with 
rows. For example, if the columns represent items 
on a mathematics test, the items may differ in 
difficulty, thus creating a separable source of vari-
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Table 1 
Analysis of Variance Models Used in Developing Intraclass 
Correlation Coefficient Definitions 

Case label 

Case 1: One-way 
random effects 

Case 2: Two-way 
random ef­
fects, with in­
teraction 

Case 2A: Two­
way random ef­
fects, interac­
tion absent 

Model 

X;j = IL + r; + W;j 

where i = 1, ... , n and 
j = 1, ... ' k. 

where i = 1, ... , n and 
j = 1, ... ' k. 

where i = 1, ... , n and 
j = 1, ... ' k. 

Assumptions 

IL (the population mean for all 
observations) is constant; r; 
(the row effects) are random, 
independent, and normally dis­
tributed with mean 0 and 
variance u~; and w;i (residual 
effects) are random, indepen­
dent, and normally distributed 
with mean 0 and variance u~. 
Moreover, the effects r; and 
W;i are pairwise independent. 

JL and r; are as before; ci (the col­
umn effects) are random, inde­
pendent, and normally distrib­
uted with mean 0 and 
variance u~; rc;i (the interac­
tion effects) are random, inde­
pendent, and normally distrib­
uted with mean 0 and u~c; and 
e;i (residual effects) are ran­
dom, independent, and nor­
mally distributed with mean 0 
and variance u;. Moreover, 
all the effects are pairwise in­
dependent. 

Same as for Case 2 except that 
there is no interaction effect. 

Case 3: Two-way 
mixed effect 
model, with in­
teraction 

X;j = JL + r; + C1 + rc;i + e;i Same as for Case 2 except that 
ci are fixed so that Lei = 0, 

Case 3A: Two­
way mixed 
model, interac­
tion absent 

where i = 1, ... , n and 
j = 1, ... ' k. 

where i = 1, ... , n and 
j = 1, ... , k. 

ance. The same would be true if the columns 
represented different judges who might differ 
in their anchor points. These situations specify a 
two-way model, and from a design point of view, 
a randomized blocks design in which the col­
umn variable is crossed with the row (blocks) 
variable. 

Whereas there was just one one-way model 

k 

L rc;i = 0, and the parameter 
j=l 

corresponding to u~ in Case 2 
is (J~ = LcJ!(k- 1 ). 

Same as for Case 3 except that 
there is no interaction effect. 

given in Table 1, there are four given for two-way 
models. These four models differ in whether ci 

represents random or fixed effects and in whether 
the model includes an interaction component. For 
Cases 2 and 2A, the effects ci are random, but for 
Cases 3 and 3A they are fixed. The A extension 
to case numbers indicates that the interaction com­
ponent is absent from the model. These distinc-
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Table 2 
A Convenient Data Matrix and Notational System 
for Data Used in Calculating Intraclass 
Correlation Coefficients 

Object of Measurement 

measurement 1 2 ... j ... k 

1 Xu X12 ··· Xti · · · Xtk 
2 X2t X22 · · · X2i · · · X2k 

Xi! ··· Xii · · · Xtik 

n Xnt Xn2 · · · Xni · · · Xnk 

tions among models are important because they 
have implications for the ICCs that can be calcu­
lated and for their interpretations, as will be ex­
plained below. 

An analysis of variance on randomized block 
data yields three mean squares: a mean square for 
rows (MSR), a mean square for columns (MSc), 
and a residual mean square traditionally referred 
to as mean square error (MSE)· MSR in a two-way 
analysis is the same as that for a one-way analysis 
but MSE is smaller than MSw by the amount of 
variance attributable to the k-level columns factor 
(e.g., items or judges). Note that because there is 
just one observation per cell of a randomized 
blocks design, the expected mean square for MSE 
under Cases 2 and 3 (see Table 3) estimates the 
combined interaction and error variance. Interac­
tion is absent from the models given as Cases 2A 
and 3A, thus eliminating the problem of con­
founded interaction and error variance. 

Defining and Calculating ICCs for 
One-Way and Two-Way Models 

ICCs that can be defined for one-way and two­
way models are given in Tables 4 and 5. Also 
given are calculation formulas, designations, and 
interpretations for each type of ICC. Using Tables 
4 and 5 requires making distinctions between (1) 
ICCs that are for single measurements and those 
that are for average measures, (2) ICCs that mea­
sure the degree of relationship between measure­
ments (whether single measurements or averages) 

in terms of consistency or of absolute agreement, 
and (3) ICCs that reflect the degree of relationship 
between observations made under fixed levels of 
the column factor or under randomly chosen levels 
of the column factor. 

ICCs for Single Measurements 
Versus Average Measurements 

Tables 4 and 5 differ in that Table 4 gives ICCs 
that apply to single measurements X;i (e.g., the 
ratings of judges, individual item scores, or the 
body weights of individuals), whereas the Table 5 
ICCs apply to average measurements (e.g., the 
average rating for k judges, the average score for 
a k-item test, or the average weight of k litter­
mates). We refer to the Table 4 ICCs for single 
measurements as Type 1 ICCs and the Table 5 
ICCs for average measurements as Type k ICCs. 
Even though the interpretation of the two types 
of coefficients differs, mathematically the Type 1 
coefficients are simply a special case of Type k co­
efficients. 

ICCs for Consistency Versus Agreement 

Whereas there is only one ICC of each type for 
one-way data, there are two ICCs of each type for 
two-way data, as is discussed in detail in a number 
of excellent sources (e.g., Berk, 1979; Crocker & 
Algina, 1986; Shavelson & Webb, 1991; Suen & 
Ary, 1989). The first type ofiCC measures correla­
tion using a consistency definition; the second, an 
absolute agreement definition. Understanding the 
conceptual difference between them begins by 
noting their formal distinction, which is in the 
definition of the ICC denominator. For consis­
tency measures, column variance is excluded from 
denominator variance, and for absolute agreement 
measures, it is not. 

Column variance is excluded from the denomi­
nators of consistency measures because it is 
deemed to be an irrelevant source of variance. 
Consider, for example, that measurements are 
needed to determine the relative standing of job 
applicants. In this context it does not matter that 
Judge 1 assigns relatively high scores and Judge 2 
low scores. The ratings of the two judges agree to 
the extent that an additive transformation serves 
to equate them (e.g., subtracting the mean rating 
for each judge from their individual ratings). This 
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Table 3 
Mean Square Expectations for Analysis of Variance Models Given in Table 1 

Model and source 
of variation 

Between rows 
Within rows 

df MS EMS 

Case 1: One-way random effects model 

n- 1 MSR 
n(k- 1) MSw 

Case 2: Two-way random model with interaction 

Between rows 
Within rows 

Between columns 
Error 

n - 1 MSR ka; + a;c + a; 
n(k - 1) MSw a~+ a;c +a; 
k- 1 MSc na~ + a;c +a; 
(n - 1)(k - 1) MSE a;c +a; 

Case 2A: Two-way random model, interaction absent 

Between rows n - 1 MSR ka; +a; 
Within rows n(k- 1) MSw a~+ a; 

Between columns k - 1 MSc na~ + a; 
Error (n - 1)(k - 1) MSE a; 

Case 3: Two-way mixed model with interaction 

Between rows n - 1 MSR ka; +a; 

Within rows (k ) Ms 2 k 2 2 n - 1 w (Jc + k- 1 a,c + a, 

Between columns k- 1 MSc 2 k 2 2 n(Jc + k _ 
1 

a,c +a, 

Error (n - 1)(k - 1) k 2 2 k _ 1 a,c +a, 

Case 3A: Two-way mixed model, interaction absent 

Between rows 
Within rows 

Between columns 
Error 

n - 1 MSR ka; + a; 
n(k - 1) MSw (J~ +a; 
k-1 MSc nO~+a; 
(n - 1)(k - 1) MSE a; 

Note. E(MS) = expected mean squares; MSR = mean square for rows; MSw = mean square 
for residual sources of variance; MS, = mean square for columns; MSE = mean square error. 

definition of agreement, which is useful in contexts 
in which comparative judgments are made about 
the objects of measurement, contrasts with an ab­
solute agreement definition of correlation, which 
takes total score variance as its denominator. In 
this case, when measurements differ in absolute 
value, regardless of the reason, they are viewed 
as disagreements. Thus paired scores (2,4), (4,6), 
and ( 6,8) are in perfect agreement using a consis­
tency definition [ICC(C,1) = 1.00] but not an abso­
lute agreement definition [ICC(A,l) = .67]. 

variance in the denominator of the variance ratio, 
as shown in column 1 of Tables 4 and 5. Coeffi­
cients labeled as Type C, for consistency coeffi­
cients, do not include column variance, whereas 
those labeled as Type A, for absolute agreement 
coefficients, do. Thus, we refer to coefficients 
based on two-way models using the designations 
(C,l), (C,k), (A,l) and (A,k). For one-way models, 
there are no C-type coefficients because only abso­
lute agreement is measurable in this context. 

Contrasting ICC(C,l) and Pearson's r 
In conformity with the distinction above, the 

definitions for ICCs based on two-way models dif­
fer by virtue of the presence or absence of column 

The example given above in which paired scores 
(2,4), (4,6), and (6,8) yield a value of 1.00 for 
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Table 4 
Single Score Intrac/ass Correlation Coefficients (ICCs) for One-Way and Two-Way Models 

Definitions of ICCs 
p 

One-way model 
Case 1 model 

(]"~ 

(]"~ + (]"~ 

Two-way models' 
Case 2 model 

(]"~ 

or Case 2A model 
(]"~ 

u~ + u; 

Case 2 model 
(]"~ 

or Case 2A model 
(]"~ 

Case 3 model 
u~- u~cf(k- 1) 

u~+(u~c+uD 

or Case 3A model 
(]"~ 

u~ + u; 

Case 3 model 
u~- u~cf(k -1) 

u; + 8~ + (u~c + uD 

or Case 3A model 
(]"~ 

Formulas for calculating p Designation 

Row effects random 

ICC(1) 
MSR + (k- 1)MSw 

Interpretation of ICC 

The degree of absolute 
agreement among measure­
ments made on randomly se­
lected objects. It estimates the 
correlation of any two mea­
surements. 

Column and row effects random (two-way random effects model) 

k 
MSR + (k- 1)MSE + -(MSc- MSE) 

n 

ICC(C,l) 

ICC(A,l) 

The degree of consistency 
among measurements. Also 
known as norm-referenced re­
liability and as Winer's adjust­
ment for anchor points 
(Winer, 1971). In generalizabil­
ity theory, this ICC estimates 
the squared correlation of indi­
vidual measurements and uni­
verse scores. 

The degree of absolute 
agreement among measure­
ments. Also known as crite­
rion-referenced reliability. Esti­
mates the Type 1 ICC for 
one-way, unmatched data 
(Rajartnam, 1960). 

Column effects fixed, row effects random (two-way mixed effect model) 

MSR- MSE ICC(C,1) The degree of consistency 
MSR + (k- 1)MSE among measurements 

MSR + (k- 1)MSE + ~ (MSc- MSE) 
n 

ICC(A,l) 

made under the fixed levels 
of the column factor. This 
ICC estimates the corre­
lation of any two measure­
ments, but when interaction 
is present, it underestimates 
reliability. 

The absolute agreement of mea­
surements made under the 
fixed levels of the column 
factor. 

Note. MSR = mean square for rows; MSw = mean square for residual sources of variance; MSE = mean square error; MSc = 
mean square for columns. 
' In the event of data with a two-way classification for which the column variance is zero (i.e., u~ = 0 or 8~ = 0, depending on the 
model), a one-way model should be used. Thus even though test scores on k parallel tests can be classified by test and test taker, 
he column variance by definition is zero, which means that a one-way model applies. 
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Table 5 
Average Score Intraclass Correlation Coefficients (ICCs) for One-Way and Two-Way Models 

Definitions of ICCs 
p 

Case 1 model 
a~ 

Formulas for 
calculating p Designation 

One-way model: Row effects random 

Interpretation of ICC 

MSR- MSw ICC(k) The degree of absolute agreement for mea-
MSR surements that are averages of k indepen­

dent measurements on randomly se­
lected objects. 

Two-way models•: Column and row effects random (random effects model) 

Case 2 model 
a~ 

or Case 2A model 
a~ 

Case 2 model 
a~ 

or Case 2A model 
a~ 

a~+ (a~+ aD!k 

Case 3 model 
a~- a~J(k- 1) 

a~+ (a~,+ al.)!k 

Case 3A model 
a~ 

a;+ a;! k 

Case 3 model 
a~- a~J(k- 1) 

Case 3A model 
a~ 

MSR- MSE ICC(C,k) The degree of consistency for measure-
MSR ments that are averages of k indepen­

dent measurements on randomly se­
lected objects. Known as Cronbach's 
alpha in psychometrics. In generalizabil­
ity theory, this ICC estimates the 
squared correlation of average scores 
and universe scores. 

ICC(A,k) The degree of absolute agreement for mea­
surements that are averages based on k 
independent measurements on randomly 
selected objects. Also estimates from two-
way data the Type k ICC for one-way 
data (Rajaratnam, 1960). 

Column effects fixed and row effects random (mixed effects model) 

Not estimable 

ICC(C,k) 

Not estimable 

ICC(A,k) 

The degree of consistency for averages of k 
independent measures made under the 
fixed levels of the column factor. 

The degree of absolute agreement for mea­
surements that are based on k indepen­
dent measurements made under the 
fixed levels of the column factor. 

Note. MSR = mean square for rows; MSw = mean square for residual sources of variance; MSE = mean square error; MSc = 
mean square for columns. 
'In the event of data with a two-way classification for which the column variance is zero (i.e., u; = 0 or 8; = 0, depending on the 
model), a one-way model should be used. Thus even though test scores on k parallel tests can be classified by test and test taker, 
the column variance by definition is zero, which means that a one-way model applies. 

ICC(C,l) may cause some readers to wonder how 
ICC(C,l) compares to a Pearson r coefficient, be­
cause for the above set of paired scores Pearson's 
r would also be 1.00. Until recently, an important 

contrast between ICC(C,l) and a Pearson r was 
that the latter could be computed only for k = 2, 
but Fagot (1993) has introduced a correlation in­
dex (L, for linearity index) that equals the Pearson 
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r for k = 2 and equals the arithmetic mean of all 
possible pairwise rs for k ~ 2, so restrictions on k 
no longer apply for this type of relational measure. 
The distinction, therefore, is between what Fagot 
calls a linearity index and an additivity index. The 
Pearson r is a linearity index because it measures 
the degree to which one variable y can be equated 
to another variable x by a linear transformation 
(y = ax + b). ICC(C,l) on the other hand is an 
additivity index because-for the case k = 2-it 
measures the degree to which one variable y can 
be equated to another variable x by adding a con­
stant (y = x + b). 

A consequence of the linearity-additivity dis­
tinction is that differences in the sample variances 
for the variables x andy will attenuate ICC(C,1) 
relative tor. Recall that ICCs are constructed us­
ing models that assume equal variance (see Table 
1). Variance differences between columns in the 
sample data, therefore, indicate lack of agreement 
among the observations. ICC( C,l) is appropriately 
sensitive to this source of disagreement. Thus, 
whereas a Pearson r-using its linear scale defini­
tion of agreement-judges paired scores (0,4), 
(5,5), and (10,6) to be in perfect agreement (r = 
1.00), ICC(C,1) judges them to be in imperfect 
agreement [ICC(C,1) = .38). A point to remem­
ber, therefore, when choosing between an index 
of linear agreement and ICC(C,1) is that ICC(C,1) 
is an appropriate measure of agreement only when 
there is a common population variance for all 
measurement conditions. Where this assumption 
is not met, it would be meaningless to calculate 
ICC(C,1) or any other ICC. This fact harks back 
to the original justification for the term intraclass, 
which is that measurements must be of a single 
class. 

Column Variables Representing Fixed 
Versus Random Effects 

A third matter of importance for distinguishing 
among the different ICCs in a two-way model con­
cerns whether the column variable represents a 
random effect or a fixed effect. This distinction 
was introduced above as the basis for distinguish­
ing Cases 2 and 2A from Cases 3 and 3A in Table 
1. In technical terms, a factor is random when its 
levels are selected by random sampling from a 
larger set of equally usable levels; it is fixed when 
its levels are dictated by the research question. In 

practical terms, one knows that the levels of a 
variable are random when a change in the levels of 
the variable would have no effect on the question 
being asked. Jackson and Brashers (1994) call this 
the "replaceability test" for determining when a 
factor is random. Subjects constitute a random 
factor, for example, because the particular subjects 
selected for any study are always replaceable by 
others from the same population. In contrast, 
changing the levels of a variable with fixed effects 
substantially alters the research question. An ex­
ample of a fixed effect variable is the biological 
relation variable in a study that has levels of 
mother and child. Changing these levels to uncle 
and nephew would imply a totally different re­
search interest. 

The importance of the random-fixed effects dis­
tinction is in its effect on the interpretation, but 
not calculation, of an ICC. Namely, when levels 
of the column factor are randomly sampled, one 
can generalize beyond one's data, but not when 
they are fixed. In either case, however, the value 
of the ICC is the same, though one should keep 
in mind that the population ICCs are defined dif­
ferently in the two cases (see Tables 4 and 5). 

Not only are ICC calculation formulas the same 
for random and mixed effect models, so too are the 
confidence intervals and test statistics, as shown in 
Tables 7 and 8 and as demonstrated in Appendix 
A. Case 3-the two-way model that includes a 
fixed column factor in conjunction with interaction 
variance-provides the only complication. In this 
case, ICCs (C,k) and (A,k) cannot to our knowl­
edge be estimated, as indicated in Table 5. 

ICCs Not Defined by Shrout and 
Fleiss (1979) 

Readers familiar with Shrout and Fleiss's (1979) 
classic paper on intraclass correlation coefficients 
will note that ICC(A,1) for mixed effects models 
(Cases 3 and 3A) and ICCs (C,1) and (C,k) for 
random effects models (Cases 2 and 2A) were not 
among the ICCs that Shrout and Fleiss defined. 
These ICCs were omitted because they are not 
correlations in the strict sense of being ratios of 
covariance to total variance. Nonetheless, these 
ICCs are of considerable practical value for mea­
suring degree of relationship. The practical value 
of ICC(C,l) and ICC(C,k) coefficients for random 
effects models is well documented in measurement 
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theory. Hartmann (1982), for example, suggested 
the random effects model ICC(C,l) as a measure 
of interobserver reliability, a suggestion seconded 
by Suen (1988), who nonetheless prefers to call the 
ICC a measure of intraobserver reliability. Type 
(C,k) coefficients for random effects models are 
very widely used as the generalizability theory ana­
log to reliability coefficients in classical test theory 
(e.g., Shavelson & Webb, 1991, p. 92). They are 
equal to Cronbach's alpha (Cronbach, 1951), the 
most widely used measure in psychometrics for 
estimating the internal consistency of multi-item 
tests. To our knowledge, however, the (A,l) mixed 
model coefficient is novel. An example will illus­
trate its practical value. 

Use of ICC(A,l) for Mixed Effects Designs 

When adoption study data are analyzed, there 
are two effects of major interest. One is measured 
in mean differences; the other in correlations. The 
interest in mean differences is for determining 
whether adopted-away children have trait values 
that differ on average from those of their biological 

. parents. The interest in correlations is for de­
termining whether the degree of correlation for 
genetically paired individuals who do not live 
together is different from the correlation for 
genetically unrelated individuals who do live to­
gether. 

A consistent finding from adoption research us­
ing IQ as a trait measure is that while adopted 
children have higher IQs on average than do their 
biological parents, their scores nonetheless corre­
late better with those of their biological parents 
than with those of their adoptive parents (Horn, 
Loehlin, & Willerman, 1979; Skodak & Skeels, 
1949). These findings have been difficult to recon­
cile (Turkheimer, 1991) because on the basis of 
the difference in correlations, which are typically 
measured with Pearson rs, one is inclined to view 
the adoption data as evidence of the importance 
of genetic differences in creating individual differ­
ences in IQ. On the basis of the mean differences, 
one is inclined to see evidence of the role of envi­
ronmental differences in creating individual differ­
ences in IQ. Historically, therefore, analysts have 
treated adoption data on IQ as a figure-ground 
illusion: They have focused first on one effect and 
then the other. Although both effects need to be 
highlighted, there is an additional need to recon-

cile the two findings. ICC(A,1) is ideal for the 
purpose. 

Using ICC(A,l) to measure the correlation be­
tween parents and children (fixed effects in the 
model) serves to resolve the different foci of tradi­
tional analyses-absolute differences on the one 
hand and rank order similarities on the other­
into a single measure, one that can be clearly con­
trasted with a linearity (e.g., r) or additivity (e.g., 
ICC(C,1)) index. When the mean differences be­
tween groups are small, there will be little differ­
ence between ICC(A,l) and ICC(C,l). As mean 
differences increase, however, ICC(A,1) will di­
minish in value relative to ICC(C,l), thereby em­
phasizing even for the most casual reader that 
agreement in an additive or linear sense must 
not be interpreted as agreement in an absolute 
sense. This is demonstrated with the data in 
Table 6. 

For all three data sets in Table 6, ICC(C,l) 
equals the Pearson r coefficient because the 
mother and child variances in IQ are equal 
(SD = 15ineach).ICC(A,l),however,differsfrom 
the other two measures. As the mother-child dif­
ference-indexed here by Cohen's d-increases 
from d = 0.2 to d = 0.6 to d = 1.0, ICC( A,l) declines 
from .68 to .58 to .46. As differences between the 
fixed groups increase, therefore, ICC(A,l) is atten­
uated in value. For this reason, reporting parent­
child correlations in this metric would enable those 
who work with adoption data to report their find­
ings in a way that considers simultaneously the two 
highly prominent group and individual difference 
effects that are present when children are adopted 
away into environments more favorable to their de­
velopment. 

A Flow Chart for Selecting an ICC 

As an aid to readers in selecting the ICC 
in Tables 4 and 5 that is appropriate for their 
data and conceptual purpose, we have included 
the flow chart given as Figure 1. The series of 
decisions terminate with the designation of an 
ICC. 

Forming Inferences About ICCs 

With the foregoing as background that will aid 
in selecting and interpreting a calculation formula 
for an ICC, we turn now to the issues of forming 
inferences about ICCs. 



INTRA CLASS CORRELATION COEFFICIENTS 39 

Table 6 
A Comparison of /CC(A,l), (C,l) and Pearson r Correlation Coefficients for 
Measuring the Correlation Between IQ Scores That Differ in Their Means 

Mean difference = 3 pts Mean difference = 9 pts Mean difference = 15 pts 
(d = 0.20) (d = 0.60) (d = 1.00) 

Mother's Child's Mother's Child's Mother's Child's 

103 119 97 119 91 119 
82 65 76 65 70 65 

116 106 110 106 104 106 
102 102 96 102 90 102 
99 105 93 105 87 105 
98 100 92 100 86 100 

104 107 98 107 92 107 
62 85 56 85 50 85 
97 101 91 101 85 101 

107 110 101 110 95 110 
M = 97 100 91 100 85 100 

SD = 15 15 15 15 15 15 

r = 0.670 0.670 0.670 
ICC(C,l) = 0.670 0.670 0.670 
ICC(A,1) = 0.679 0.584 0.457 

Note. ICC = intraclass correlation coefficient; pts = points. 

Confidence Intervals for ICC Population 
Values (p) 

Confidence intervals on the population value of 
ICCs (p) for one-way and two-way models are 
given in Shrout and Fleiss (1979) and were devel­
oped by Haggard (1958) and Fleiss and Shrout 
(1978). The formulas for the upper and lower lim­
its to the 1 - a confidence intervals are given in 
Table 7. One notes that the procedure is more 
complicated for Type A ICCs that contain column 
variance in their denominators than for Type C 
ICCs that ignore this source of variance. 

F Tests 

In addition to using one's sample data to com­
pute confidence intervals, researchers frequently 
use their data to test hypotheses about the popula­
tion value of p. The most common is to test the 
hypothesis that p = 0 against the alternative that 
p > 0. The row effects F statistic (MSR!MSw for 
one-way designs and MSR/ MSE for two-way de­
signs) serves this purpose. That is, the test for the 
significance of differences among the row means 
also serves to test the hypothesis that p is zero. 

Although tests of the hypothesis p = 0 are com­
mon, they are not particularly informative. In stud-

ies of test score reliability, twin resemblance, and 
rater agreement, nonzero correlations are as­
sumed. In these contexts, it is more useful to deter­
mine whether the obtained value p permits the 
inference that p exceeds some nonzero value. One 
might, for example, determine whether to accept 
the hypothesis that p exceeds the small, medium, 
or large effect size criteria set up by Cohen (Co­
hen, 1988, p. 83) or whether a parent-child ICC 
of .65 is sufficiently greater than the theoretical 
limit of .50 to conclude that assortative mating has 
occurred. Test statistics to conduct these tests on 
ICCs defined using one-way and two-way models 
are given in Table 8 (see Appendix A for their 
development). For the Type C ICCs, the Table 8 
statistics are the product of the row effect F statis­
tic and a quantity that equals 1.00 when the null 
hypothesis value, p0 , equals 0 and that equals an 
ever smaller fractional value as p0 approaches 1.00. 
Thus the test statistic is a fractional value of the 
original row effect F value. For Type A ICCs, the 
appropriate F for Ho: p = p0 , p0 > 0, is obtained 
by multiplying MSc and MSE by factors that are 
dependent on n, the value of p0 and, in the case 
of ICC(A,l), k. SchOnemann (1991) gave a test 
statistic for Type ( C,1) coefficients equivalent to 
the one given here, but only for k = 2. 
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Selecting an ICC 

Single 
measure 

Random 

Twoway Oneway 

measure 

Consistency 

I ICC(C,k) I Not Estimable 

Consistency 
Absolute Absolute 

Agreement Consistency Agreement 
Consistency 

Agreement 

Figure 1. Flow chart for selecting an appropriate intraclass correlation coefficient (ICC). 

The circumstances under which the Table 8 F 
statistics lead to a rejection of a one-tailed or two­
tailed H0 are the same as for any F test. For one­
tailed tests (H1: p > Po). H0 is rejected when the 
p value, P(F ~ Fobscrved), is less than or equal to 
a. For two-tailed tests, one must consider P(F ~ 
FObservw) as well as P( F ~ Fobscrved)· The smaller of 
these must be less than or equal to a./2 to reject 
H0 • These probabilities may be easily obtained 
using any statistical package that includes a routine 
for calculating probabilities using the F distribu­
tion (e.g., SAS, 1989). 

Heretofore, the common method of conducting 
significance tests concerning nonzero values of Po 
has been to use Fisher's r to z' transformation (see 
Appendix B). As an alternative to Fisher's z test, 
the F tests given in Table 8 are clearly preferable. 
For all but the Type A coefficients, they provide 
exact probabilities, not approximate ones as does 
Fisher's test. More important, the Table 8 tests 
differentiate among forms of intraclass correla-

tion, whereas Fisher's test does not. In addition, 
the tests have an advantage in computational ease 
because the terms needed to produce the F statis­
tics come directly from the analyses of variance 
used to calculate A and the tests are somewhat 
more powerful than Fisher's z' test, at least for 
those formulas that permit an exact determination 
of power.3 This small but consistent power advan­
tage is reflected also in the confidence interval 
procedures because confidence intervals obtained 
using the formulas of Table 7 will be smaller than 
those obtained using Fisher's alternative proce­
dure. A word of caution, however, is that the mag­
nitude of correlations may be difficult to interpret 
when nonnormality is present; so when normality 

3 Because the denominator degrees of freedom for 
the F statistics calculated on Type (A, 1) and Type 
(A, k) coefficients are sample dependent, the power of 
these statistics for detecting a true H 1 cannot be 
determined exactly. 
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Table 7 
Upper and Lower Limits on 1 - a Confidence Intervals on p for One-Way and Two-Way Models 

ICC type 

ICC(1) for Case 1 

ICC(k) for Case 1 

ICC(C,1) for Cases 2, 
2A, 3, and 3A 

ICC(C,k) for Cases 2, 
2A, and 3A, but not 
for 3. 

ICC(A,1) for Cases 2, 
2A, 3, and 3A 

ICC(A,k) for Cases 2, 
2A, and 3A, but 
not 3 

Confidence interval limits 

FL -1 
FL + (k- 1) 

where 

FL = Fobs/ Ftabled 

Lower limit 

One-way model 

Fobs is the row effects F from the 
ANOV A. F,abled denotes the (1 - !a) 
X 100th percentile of the F distribu­
tion with n - 1 numerator degrees of 
freedom and n(k - 1) denominator de­
grees of freedom. 

1 _ _!_ 
FL 

where FL is defined as above. 

FL + (k- 1) 
where 

FL = Fobs/ Ftabled 

Two-way models 

Fobs is the row effects F from the two­
way ANOV A. F~abJed denotes the (1 -
!a) X 100th percentile of the F distri­
bution with n - 1 numerator degrees 
of freedom and (n - 1)(k - 1) denom­
inator degrees of freedom. 

1-_l 
FL 

where FL is defined as for Type (C,1) 
above. 

F*[kMSc + (kn- k- n)MSE] + nMSR 
F* denotes the (1 -!a) X 100th percen­

tile of the F distribution with n - 1 nu­
merator degrees of freedom and v de­
nominator degrees of freedom. 

Fu-1 
Fu + (k -1) 
where 

Upper limit 

Fu = Fobs X Ftabled 

Fobs is the row effects F from the 
ANOV A. F,abled denotes the (1 -!a) 
X 100th percentile of the F distribu­
tion with n(k - 1) numerator degrees 
of freedom and n - 1 denominator de­
grees of freedom. 

1-_l 
Fu 

where Fu is defined as above. 

Fu-1 
Fu+(k-1) 
where 

Fu = Fobs" X Ftabled 

Fobs is the row effects F from the two­
way ANOV A. F,abJed denotes the (1 -
!a) X 100th percentile of the F distri­
bution with (n - 1)(k - 1) numerator 
degrees of freedom and n - 1 denomi­
nator degrees of freedom. 

1-_l 
Fu 

where F u is defined as for Type ( C,l) 
above. 

n(F*MSR- MSE) 
kMSc + (kn- k- n)MSE + nF*MSR 
F* denotes the (1 -!a) X 100th percen­

tile of the F distribution with v numer­
ator degrees of freedom and n - 1 de­
nominator degrees of freedom. 

where 
(aMSc + bMSE)2 

v = (aMSc)2) + (bMSE)2 

k-1 (n-1)(k-1) 
and 

a= k(p) b= 1 +kp(n-1) 
n(1 - p)' n(l - p) 

where F* is defined as for ICC(A,1) 
above. 

n(F*MSR- MSE) 
MSc - MSE + nF*MSR 
where F* is defined as for ICC(A,l) 

above. 

Note. ICC = intraclass correlation coefficient; ANOV A = analysis of variance; obs = observed; MSR = mean square for rows; 
MSE = mean square error; MSc = mean square for columns. 
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Table 8 
Test Statistics for Testing the Null Hypothesis H0 : p = Po 

Formulas for F statistics 

Model and ICC 

Case 1: One-way random 

Cases 2 and 2A, 3 and 
3A: Two-way random 
and mixed effects 

Type C ICCs 

Type A ICCs 

Type 1 ICCs 

_M_S_R X __ 1_-___r_P-"-o _ 
MSw 1 + (k- 1)po 

_M_S_R X __ 1_-_,Pc...:o:___ 
MSE 1 + (k- 1)po 

Type k ICCs 

MSR 
MSw (1- Po) 

or 

1- Po 
1-p 

MSR ) 
MSw (1- Po 

or 

1- Po 
1-p 

MSR 

dfi dfz 

n - 1 n(k - 1) 

n - 1 (n - 1)(k - 1) 

n - 1 where for Type(A,1) 
aMSc + bMSE 

where 

cMSc + dMSE 

where 
(aMSc + bMSE)l 

v = (aMSc)l + (bMSE)l 

a= k(po) 
n(1 -Po) 

b = 1 + kpo(n- 1) 
n(1 -Po) 

c = Po 
n(1 -Po) 

d = 1 + Po(n- 1) 
n(1 -Po) 

k- 1 (n- 1)(k- 1) 

or for Type(A,k) 

(cMSc + dMSE)Z 
v = (cMSc)2 + (dMSE)2 

k-1 (n-1)(k-1) 

Note. p0 is the hypothesized value of p, and p is the intraclass correlation coefficient (ICC). MSR = mean square for rows; 
MSw = mean square for residual sources of variance; MSE = mean square error; MS, = mean square for columns. 

is in question, one might consider transforming 
one's data before applying a test statistic. For one­
way random effects data, Wilcox (1994) suggests 
using Winsorized ICCs. 

Conclusion 

In summary, when investigators are concerned 
with the consistency or absolute agreement among 
multiple (k) observations made on randomly se­
lected objects of measurement and when the error 
variance for measures is uniform across the condi­
tions of measurement, ICCs provide the appro­
priate measure. Confidence intervals and test sta­
tistics exist for each of the ICCs that can be defined 
for one-way and two-way models. These are exact 
for the most part, and therefore they are prefera­
ble to confidence intervals and one-sample tests 
conducted using Fisher's z' transformations of p. 
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Appendix A 

Derivation of Test Statistics 

The model labels and ICC definitions in this appendix 
are from Tables 1, 4, and 5. The expected mean squares 
are from Table 3. The label ICCP denotes the popula­
tion intraclass correlation. F statistics for testing H0: 

ICCP = p0 are derived below, 

For Case 1: One-Way Random Effects Model 
a2 

Ho: ICCP(1) = - 2 -'-2 =Po· 
a,+ aw 

ka; +a~ 1 + (k- 1)p0 Under H 0 , 2 aw 1- Po 

(A1) 

From the table of expected mean squares, E(MSR) = 
ka; +a~, and E(MSw) = a~. 

Then F- MSR /MSw 
- ka; +a~ a~ 

= _M_S_R X -o---::-a-"-~-----:c 
MSw ka; +a~ 

MSR 1- Po = -- X ----'--'---
MSw 1 + (k- 1)p0 ' 

which under H0 has an F distribution with df = n - 1, 
n(k - 1). 

a2 
H0 : ICCP(k) = 2 ' 2 /k =Po· 

a,+ aw 

ka2 + a 2 

UnderHo, ' 2 w l . 
aw -Po 

Then F MSR /MSw 
= ka; +a~ a~ 

= MSR X a~ 
MSw ka; +a~ 

MSR ) =--X (1- Po 
MSw 

_ 1 - Po h A _ MSR - MSE 
- 1 - p , w ere p- MSR 

(A2) 

which under H0 has an F distribution with df = n - 1, 
n(k - 1). 

Case 2: Two-Way Random Effects 
Model With Interaction 

a; 
Ho: ICCP(C,1) = 2 2 2 =Po· 

a,+ arc+ a, 
(A3) 

Replacing a~ and MSw in Equation A1 with a~ and 
MSE, respectively, one can easily show the test statistic is 

which under H0 has an F distribution with df = n - 1, 
(n - 1)(k - 1). 

a2 
H0 : ICCP(C,k) = 2 ( 2 ' 2)/k =Po· (A4) 

a,+ arc+ a, 

Replacing a~ and MSw in Equation A2 with a; and 
MSE, respectively, one can easily show the test statistic is 

MSR 
F=-X (1- Po) 

MSE 

_ 1 - Po h A _ MSR - MSE 
- 1 - p , w ere P- MSR 

which under H0 has an F distribution with df = n - 1, 
(n - 1)(k - 1). 

a2 
Ho: ICCP(A,1) = 2 2 ' 2 2 =Po· (A5) 

a, + a, + a,,+ a, 

Under H 0 , 

k 2 2 2 _ [ 1 kpo kpo ] ( 2 2) a, + a,,+ a,- + -
1
--- (

1 
) a,,+ a, 

-po n -po 

kpo(na~ + a;, + a;) 
+ . 

n(1 -Po) 

From the table of expected mean squares for Case 2, 

E(MSR) = ka; +a;,+ a;, E(aMSc) 

= a(na~ + a;,+ a;), and E(bMSE) 

= b(a;, +a;), where 

kpo kpo kpo 
a = b = 1 + -- - --'----,-

n(l - Po)' 1 - Po n(l - Po)" 

Then under H 0 
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has an approximate F distribution (see Satterthwaite, 
1946) with df = n - 1 and 

_ 2/[(aMSc)Z (bMSE)
2 J 

m- (aMSc + bMSE) k _ 1 + (n _ 1)(k _ 1) . 

(]"~ 
Ho: ICCP(A,k) = 2 ( 2 2 2)/k =Po· (A6) 

U, + O"c + O"rc + O"e 

U d H k 2 2 2 _ Po ( 2 2 2) n er o, u, + O"rc + u,- (1 ) nuc + O"rc + u, 
n -Po 

( 1 Po Po ) ( 2 2) + + -1 -- (1 ) (]"" + u, . -po n -po 

Following the same steps as in Equation A5, it can 
be shown that a statistic for testing H0 is 

F = cMS~:~MSE, which has an approximate F 

distribution under H0 , withdf= n -1 and 

, _ ( 2/[(cMSc)Z (dMSE)
2 J 

m - cMSc + dMSE) k _ 1 + (n _ 1)(k _ 1) , 

Po 
where c = n(1 _ Po) and 

d = 1 + __!!!!._ _ Po = 1 + Po(n - 1) 
1 -Po n(1 -Po) n(1 - Pof 

Case 2A: Two-Way Random Effects Model, 
Interaction Absent 

(]"2 

Ho: ICCP(C,1) = - 2-' - 2 u, + u, 
=Po, same as in Equation A3. (A7) 

(]"2 

Ho: ICCP(C,k) = 2 ' 2/k 
u, + u, 

=Po, same as in Equation A4. (A8) 

(]"~ 
H0 : ICCP(A,1) = 

2 2 2 
U, + O"c + O"e 

= p0 , same as Equation A5. (A9) 

(]"~ 
H0 : ICCP(A,k) = 2 ( 2 2)/k 

U, + O"c + u, 

= p0 , same as Equation A6. (A10) 

Case 3: Two-Way Mixed Model 
With Interaction 

(]"2- (]"2 /(k- 1) 
Ho: ICCP(C,l) = ' 2 rc 2 2 =Po· (All) 

u, + O"rc + U, 

2 2
_1+(k-1)po 

Under H0 , ku, + u,- (1 _Po) 

( 
k 2 2) 

X k- 1) O"rc + U, . 

From the table of expected mean squares 

E(MSR) = ku~ + u; and E(MSE) 

- k 2 2 - k _ 1 O"rc + O"e · 

L F - MSR I MSE et - 2 2 • 
ku, + u, k 2 2 k _ 1 O"rc + O"e 

MSR 1- Po 
Then under H0 , F = -S X 1 (k ) , ME + -1po 

which is the same as the F 

in Equation A3. 

u 2 - u 2 /(k- 1) 
Ho: ICCP(C,k) = 2' ( '; 2)/k' 

U, + O"rc + U, 

which caimot be tested. (A12) 

u 2 - u 2 l(k- 1) 
Ho: ICCP(A,1) = z' 2 rc 2 2 =Po· (A13) 

U, + (}c + O"rc + U, 

Under Ho, 

k 2 2- kpo 
u,+u,- (1 ) n -po 

( (}2 k 2 2) 
X n c+(k- 1)u"+u, 

+ ( kpo kpo ) ( k 2 2) 1 +1-po n(1-p
0

) k-1u"+u, · 

From the table of expected mean squares 

E(MSR) = ku~ + u;, E(MSc) 

=nO~+ k ~ 
1 
u~c + u;, and E(MSE) 

- k 2 2 
- k- 1 (]"" + u,. 

Following the same steps as in Equation A5, one can 
easily see the test statistic to be the same as in Equa­
tion A5. 
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0"; - O";cf(k- 1) 
H 0 : ICCP{A,k) = 2 (B2 2 2)/k' (A14) 

0", + c + (]"" + 0", 

which cannot be tested. 

Case 3A: Two-Way Mixed Model, 
Interaction Absent 

(]"2 

Ho: ICCP(C,k) = 2 ' 2/k 
0", + 0", 

= p0 , same as in Equation A4. (A16) 

= p0 , same as in Equation AS. {A17) 

(]"; 
H0 : ICCP(C,1) = - 2--2 

O",+O", 

= p0 , same as in Equation A3. (A15) = p0 , same as in Equation A6. (A18) 

Appendix B 

Fisher's r to z Transformation for ICCs 

Because textbooks generally give only the formula 
for converting interclass rs to z ', it is important to note 
that the formula is different for converting ICCs, which 
Fisher also designates as r (Fisher, 1938, p. 225). Rather 
than using the interclass formula 

one uses the formula 

_ 1
1 

1 + (k- l)r 
Z;- 2 og 1- r ' 

where k is the number of observations made on each 
object of measurement. The variance of the above statis­
tic is 

k 
0"

2 
= :::-:2(;-n---.:2:-:-)(:;-:k---:1:-:-)' 

where n is the number of objects of measurement and 
k is, again, the number of observations. 
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Correction to McGraw and Wong (1996)

The article "Forming Inferences About Some Intraclass Correlations Coefficients" by Kenneth O.

McGraw and S. P. Wong (Psychological Methods, 1996. Vol. 1, No. 1, pp. 30-46) contained three

errors. The intraclass correlation coefficient (ICC) and rvalues given in Table 6 (p. 39) of the article

should be changed to r = .714 for each data set, ICC(C.l) = .714 for each data set, and ICC(A.l)

= .720, .620, and .485 for the data in Columns 1, 2, and 3 of the table, respectively.

In Table 7 (p. 41), which is used to determine confidence intervals on population values of the

ICC, the procedures for obtaining the confidence intervals on ICC(A,k) needs to be amended

slightly. The definitions of F^ and F* are said to be the same as for ICC(A, 1); however, the degrees

of freedom v need to be calculated using

n ( l - p )

in place of a and

d=l
p(n - l )

h n ( l - p )

in place of b.

On pages 44—46, references to Equations A3, A4, and so forth in the Appendix should be to

Sections A3, A4, and so forth. We regret any inconvenience or confusion these errors may have

caused.
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