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Article

In day-to-day life, the success of any animal is heavily 
influenced by its ability to detect and interpret the behavior 
of other organisms. These crucial skills guide the search for 
life’s basic necessities (e.g., food, water, and security), as 
well as a variety of social and intellectual pursuits (e.g., 
reproduction, group formation, and skill acquisition). These 
skills also play an integral role in the scientific method 
(Kosso, 2011) as the basis of observational measurement, 
which is a systematic approach to detecting and interpreting 
behavior. A wide variety of scientific endeavors rely on 
observational measurement including biology, psychology, 
sociology, education, medicine, and marketing.

Observational measurement nicely captures the unfold-
ing of behavior over time, which is essential to understand-
ing its functionality (i.e., antecedents and consequences) 
and the dynamic processes it contributes to (Bakeman & 
Quera, 2011). Observational methods also circumvent 
many of the response biases that survey methods are prone 
to such as self-presentation and social desirability (Stone 
et al., 2000). They can even be used with participants for 
whom surveys would be impractical such as nonhuman ani-
mals, very young children, or patients undergoing medical 
procedures.

The current article provides an interdisciplinary primer 
on observational measurement. First, it details the various 
types of measurement instrument that can be applied to 
observational data. Second, it describes the various meth-
ods that can be used to validate inferences drawn from 
observational measurements. Finally, it outlines the chal-
lenges currently faced by observational researchers, several 

recent advances in observational methodology, and the 
directions that we hope future observational research will 
explore.

Measurement Instruments

Observational methods use trained individuals called observ-
ers to make quantitative judgments about behaviors of inter-
est. These judgments are standardized across observers 
through the use of measurement instruments. Measurement 
instruments reflect researchers’ theories about what aspects 
of behavior are important and focus observers’ attention on 
specific types of behavioral information. Some instruments 
require observers to assign behaviors to one or more discrete 
categories, while others require observers to rate behaviors 
on one or more continuous dimensions. In the following sub-
sections, we discuss several characteristics on which mea-
surement instruments meaningfully vary.

Scale of Measurement

One of the fundamental characteristics of a measurement 
instrument is the statistical data type or “scale of measure-
ment” (Stevens, 1946) that it yields (e.g., nominal, ordinal, 
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interval, or ratio). The type of instrument chosen and its 
scale of measurement can have important consequences for 
data collection, validation, and statistical analysis. In gen-
eral, instruments can be usefully characterized as either cat-
egorical or dimensional (Table 1).

Categorical instruments require observers to choose 
between a limited number of predefined options, which are 
often called codes. Codes are grouped into sets that are 
often (but not always) considered mutually exclusive and 
exhaustive. Codes within a set may be treated as unordered 
or as existing on an ordered continuum. For example, a cat-
egorical instrument developed to assess teacher effective-
ness might use a set of unordered codes to categorize a 
lesson’s subject matter (e.g., math, science, or history) and 
a set of ordered codes to categorize its pacing (e.g., slow, 
medium, or fast).

Dimensional instruments, on the other hand, require 
observers to choose numerical values along continuous 
dimensions; these values are often called ratings. Each 
dimension has an upper and a lower bound; typically, any 
number between these bounds may be chosen, although 
numerical restrictions may be enforced within this range 
(e.g., only integers or multiples of 5 may be chosen). The 
choice of upper and lower bound values can influence how 
observers think about the dimension (Schwarz, Knauper, 
Hippler, Noelle-Neumann, & Clark, 1991). Including zero 
within the range communicates that the absence of behavior 
is possible, while excluding it communicates that it is not. 
Additionally, including negative numbers communicates 
that the dimension is bipolar, whereas excluding negative 

numbers communicates that the dimension is unipolar. For 
example, a dimensional instrument developed to assess the 
effectiveness of video ads might have observers rate their 
brand loyalty before and after the ad on a dimension from 
−100 to 100 and their level of engagement during the ad on 
a dimension from 1 to 10.

The choice to use a categorical or dimensional instru-
ment should be guided by theoretical consideration of the 
construct being measured. For instance, some researchers 
believe that emotion is best characterized using discrete cat-
egorical states, while others believe in measuring its under-
lying dimensions (Gunes & Schuller, 2013). It is also worth 
mentioning that the line between categorical and dimen-
sional instruments can blur when a large set of ordered 
codes is used or when numerical restrictions reduce the 
number of possible ratings to several options. In such cases, 
the distinction becomes arbitrary.

Degree of Inference

Another fundamental characteristic of a measurement 
instrument is the degree of inference it requires. This char-
acteristic can have important consequences for the validity 
of inferences drawn from its measurements. Instruments 
can be usefully categorized as either sign based or message 
based (Cohn & Ekman, 2005).

Sign-based instruments attempt to describe the features 
of behavior and require relatively low degrees of inference. 
Such instruments have also been termed “atomic” because 
they focus on small units of behavior, such as utterances 

Table 1.  Definitions for Different Approaches to Observational Measurement.

Categorical measurements vs. Dimensional measurements

Observers choose between a limited number of predefined 
options (e.g., basic emotions, attachment styles)

Observers choose numerical values along a continuous 
dimension (e.g., pleasure, arousal, dominance)

Sign-based measurements vs. Message-based measurements

Observers describe the features of behavior in terms of small 
units (e.g., movements, utterances, positions)

Observers interpret the meaning of behavior using cultural 
knowledge (e.g., emotions, motives, mental states)

Event-based measurements vs. Interval-based instruments

Observers identify discrete behavioral events and then make 
measurements (i.e., they find start and stop points)

Observers make measurements at or about 
predetermined time intervals (e.g., they measure twice 
per minute)

Expert observers vs. Naive observers

Observers who have received extensive training and have met 
quality criteria (e.g., have passed a certification test)

Observers who have received little or no training 
and may be study participants (e.g., self-ratings, 
crowdsourced ratings)

Computer-assisted measurement vs. Fully automated measurement

Humans provide measurements of behavior using computer 
software (e.g., continuous rating software)

Algorithms provide measurements of behavior after some 
initial training (e.g., head- or eye-tracking software)
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and gestures. One quintessential example of a sign-based 
instrument is the Facial Action Coding System (FACS; 
Ekman, Friesen, & Hager, 2002), which provides codes to 
describe facial behavior in terms of muscle contractions. An 
observer trained in FACS might see an interviewer smile at 
an interviewee and measure this behavior as contraction of 
the zygomatic major muscle.

Message-based instruments, on the other hand, attempt 
to interpret the meaning of behavior and require relatively 
high degrees of inference. Such instruments rely on observ-
ers to be “cultural informants” who can see the distinctions 
delineated by their categories or dimensions (Bakeman & 
Quera, 2011). One quintessential example of a message-
based instrument is the Specific Affect Coding System 
(Coan & Gottman, 2007), which provides codes to interpret 
facial behavior in terms of its affective and interpersonal 
meaning. To return to the previous example, an observer 
trained in the Specific Affect Coding System might view 
this same interviewer behavior and, based on context, mea-
sure it as affection or interest.

It is worth mentioning that sign-based instruments still 
require a degree of inference and that some message-based 
instruments require more inference than others. Thus, 
although the distinction between signs and messages is a 
useful one, this property of measurement instruments may 
be better characterized as a continuum from low to high 
inference.

Temporal Representation

Measurement instruments require observers to represent 
behaviors in time. This representation can be accomplished 
in several ways and with varying degrees of granularity. 
These characteristics can have important consequences for 
the datas’ temporal precision and for the types of statistical 
analysis that are possible. Instruments can be usefully cate-
gorized as either event based or interval based (Bakeman & 
Quera, 2011).

Event-based instruments require observers to identify 
behavioral events and assign measurements to them. Events 
are discrete occurrences of a behavior that have detectable 
starting and stopping (i.e., transition) points. Because of the 
need to specify transition points in addition to measure-
ments, event-based methods can be time consuming and 
challenging for observers. However, the benefit to this 
approach is that event-based methods allow researchers to 
answer questions about the number, duration, and sequenc-
ing of events with high temporal precision. For example, an 
event-based instrument designed to measure parental 
involvement in children’s homework might require observ-
ers to identify discrete occurrences of children asking ques-
tions and parents providing answers. Research questions 
could be then be explored regarding the number and dura-
tion of these behaviors, and additional measurements could 

be obtained about the quality of the identified events (e.g., 
the interpersonal warmth or level of technical detail in a 
parent’s answer).

Interval-based instruments, on the other hand, prompt 
observers to provide measurements at predetermined time 
intervals. Measurements may be made either about the 
moment of each prompt (i.e., what is happening right now?) 
or about the period between prompts (i.e., what has hap-
pened since the last prompt?). Prompts can be configured to 
occur at intervals of any length. Shorter intervals provide 
higher temporal precision, but are typically more expen-
sive. Longer intervals are less burdensome for observers, 
but might collapse distinct behaviors into a single observa-
tion or miss a fluctuation in behavior entirely. In the previ-
ous example, an interval-based instrument might prompt 
observers once per minute to indicate if the child has asked 
a question about the homework and if the parent has pro-
vided an answer. The same ratings (e.g., of warmth or level 
of detail) could also be collected at these moments.

Types of Observer

Earlier, we defined an observer as an individual trained in 
the use of a measurement instrument. Training is an itera-
tive process and the length of training is largely determined 
by the complexity of both the instrument and the behavior 
of interest. Research on observational skills training has 
found that providing immediate feedback to trainees about 
their measurements improves their accuracy and reduces 
the development of response biases (Boice, 1983). It may 
also lead to deeper understanding to have trainees role-play 
behaviors that would receive different codes or ratings 
(Scheffler, 1977).

Measurements can be collected from several different 
types of observers. Observers may be researchers or staff 
members with extensive training (i.e., expert observers), or 
they may individuals or study participants with minimal 
training (i.e., naive observers). Furthermore, observers may 
be unrelated to the individuals whose behavior they are 
observing, or they may be observing recordings of their 
own or a loved one’s behavior. For example, Levenson and 
Ruef (1992) collected ratings of marital interactions from 
unrelated naive observers, while Gottman and Levenson 
(1985) collected similar ratings from the married couples 
themselves. Finally, a large number of naive observers may 
be recruited through crowdsourcing platforms such as 
Amazon’s Mechanical Turk (Mason & Suri, 2012).

The choice of observer type has important implications 
for the objectivity, reliability, feasibility, and usefulness of 
the resulting measurements. Expert observers are typically 
more likely to use measurement instruments as intended. 
However, expert observers are more difficult and costly to 
acquire. There are also reasons to prefer naive observers in 
some cases, such as when researchers want to capitalize on 
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the privileged knowledge that naive observers have of their 
own or of loved ones’ behavior. For instance, evidence sug-
gests that patients’ perspectives on the therapeutic alliance 
are more predictive of treatment outcome than observers’ 
perspectives (Horvath & Bedi, 2002).

Validity in Observational Measurement

Journal reviewers, policy makers, and instrument users 
require evidence that the inferences drawn from observa-
tional measurements (e.g., that a student has mastered a 
concept, that a patient is improving, or that a participant 
feels happy) are valid. It has even been argued that validity 
is “the most fundamental consideration in developing tests 
and evaluating tests” (American Educational Research 
Association [AERA], American Psychological Association, 
& National Council on Measurement in Education, 2014,  
p. 11). Validity is a multifaceted construct that has evolved 
in many ways since its inception (Geisinger, 1992). 
Contemporary validity theory emphasizes a single, unified 
construct that captures “the degree to which empirical evi-
dence and theoretical rationales support the adequacy and 
appropriateness of inferences and actions based on test 
scores” (Messick, 1989; p. 13, italics in original). Thus, 
validity is a property of inferences made from measure-
ments and not a property of the measurements themselves 
or of the instruments that yielded them. Validity is also 
importantly a dimensional and changeable property; an 
inference lies somewhere between the extremes of “wholly 
valid” and “wholly invalid,” and its specific position may 
shift over time as more evidence in favor of (or against) 
validity is gathered and as theoretical understanding of the 
focal construct evolves (Cizek, 2015).

Although extensive discussions of validity and the pro-
cess of validation are beyond the scope of the current arti-
cle, this section will provide an overview of the primary 
threats to validity and the sources of validity evidence that 
are most common in observational measurement. Readers 
interested in learning more about these topics are directed to 
the Standards for Educational and Psychological Testing 
(AERA et al., 2014).

Threats to Validity

Two major threats to validity come from construct under-
representation and construct-irrelevant variance (Messick, 
1989). When faced with either threat, an inference runs the 
risk of misrepresenting certain individuals and, as a result, 
inspiring actions that may lead to unfortunate individual, 
societal, and scientific consequences.

Construct underrepresentation occurs when an assessment 
is too narrow and fails to capture important aspects of the con-
struct being measured. For example, the validity of conclu-
sions drawn from an assessment of depression severity might 

be called into question if the assessment captured some aspects 
of depression (e.g., cognitive symptoms) but omitted other 
important aspects (e.g., social and appetitive symptoms).

Construct-irrelevant variance, on the other hand, occurs 
when an assessment is too broad and contains excess vari-
ance that is associated with other, distinct constructs or with 
extraneous characteristics of the measurement situation. 
For example, the validity of conclusions drawn from an 
assessment of depression severity might be called into ques-
tion if the assessment inadvertently captured aspects of 
anxiety and psychosis or if its results varied significantly 
based on the ordering of the questions, the setting in which 
the assessment was administered, or the clinician who 
administered it.

Evidence of Validity

Evidence for validating inferences based on measure-
ments can come from several different sources; three par-
ticularly important sources are test content, response 
processes, and hypothesized relationships among vari-
ables (Cizek, 2015). The responsibility for collecting and 
presenting such evidence is shared by both the test devel-
oper and the test user (AERA et al., 2014). The role of the 
test user is especially important when the test is applied in 
settings or for uses different than those intended by the test 
developer.

Evidence based on test content derives from analysis of 
the relationship between the content of a test and the con-
struct it is meant to measure. In observational measurement, 
test content typically refers to the naming, description, and 
criteria for an instrument’s behavioral categories and 
dimensions, as well as the details of its implementation 
(e.g., temporal resolution and observer type). This form of 
evidence often involves logical and empirical analyses of 
the relationship between test content and theoretical con-
struct, as well as expert judgments of test adequacy. The 
threats of construct underrepresentation and construct-irrel-
evance increase to the extent that content and construct fail 
to align.

Evidence based on response processes derives from 
analysis of the cognitive processes engaged in by test tak-
ers. In observational measurement, the response processes 
of the observers are of central importance. The validity of 
test content is inconsequential if observers do not use the 
appropriate criteria to assign their measurements or are 
unduly influenced by construct-irrelevant factors. This form 
of evidence often involves questioning test takers about 
their general response strategies and examining their 
responses to particular items using “think aloud” protocols 
(van Someren, Barnard, & Sandberg, 1994). Measurements 
of test taker behavior (e.g., response times and eye tracking 
on individual items) may also reveal information about 
their response processes.
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Finally, evidence based on hypothesized relationships 
among variables derives from analysis of the internal struc-
ture of test variables and their relationships to external vari-
ables of interest. In observational measurement, the internal 
structure of test variables refers primarily to the relation-
ships between behavioral categories and dimensions (as 
well as to the reliability of measurements, which will be 
discussed separately). Validity is supported to the extent 
that these internal relationships align with the hypotheses of 
accepted theories. External variables of interest often 
include measures of outcomes that the test is expected to 
predict, as well as the results of other tests hypothesized to 
measure similar or distinct constructs. Validity is supported 
to the extent that these variables predict what they are 
expected to, are related to accepted measures of similar 
constructs, and are unrelated to accepted measures of dis-
tinct constructs.

Interobserver Reliability

The most commonly provided evidence of validity in obser-
vational research comes from studies of interobserver reli-
ability. Although validity and reliability are considered 
distinct constructs, contemporary validity theory recognizes 
that reliability has important implications for validity and 
can be considered a source of validity evidence based on 
hypothesized relationships among variables (Cizek, 2015). 
By quantifying the extent to which multiple observers 
assign similar measurements to the same items, these stud-
ies reveal whether or not observers are a problematic source 
of construct-irrelevant variance.

Estimating interobserver reliability with a categorical 
measurement instrument involves assessing the extent to 
which observers assign items to the same (or similar) cate-
gories. Many approaches to estimating interobserver reli-
ability that “adjust” for random guessing by observers have 
been proposed and widely used. Two recent articles illumi-
nate the advantages and disadvantages of existing 
approaches (Feng, 2013a; Zhao, Liu, & Deng, 2012). Both 
suggest that, although no ideal approach yet exists, Bennett, 
Alpert, and Goldstein’s (1954) S index1 appears to be the 
least-biased option currently available, especially when the 
number of categories in each set of categories is relatively 
small.

Estimating interobserver reliability with a dimensional 
measurement instrument involves calculating the degree of 
association between the measurements of each observer. The 
intraclass correlation coefficient (ICC; Shrout & Fleiss, 
1979) is typically used for this purpose. The ICC relies on 
partitioning the measurement variability into various compo-
nents (e.g., variability due to items, observers, and measure-
ment error). There are many different ICC formulations, but 
the general idea shared among them is that measurements can 
be considered reliable when the variability associated with 

error constitutes a relatively small proportion of the total 
variability. For a discussion of the ICC formulations, readers 
are referred to McGraw and Wong (1996).

Current Challenges

Observational researchers inevitably confront several chal-
lenges. One is drift or the fact that, over time and experi-
ence, observers’ measurements may vary in systematic or 
stochastic ways. Second is reactivity or the fact that observ-
ers’ response processes may change in response to overt 
evaluation. Third is the fact that estimating interobserver 
reliability is not always straightforward. Finally, there is the 
high cost of collecting observational measurements.

Drift may occur for a single observer due to fatigue, for-
getting, a loss of motivation, or the accumulation of bad 
habits (Boice, 1983; Campbell & Stanley, 1966). It can also 
occur for a group of observers who, after working and train-
ing together, become more reliable with each other but less 
reliable with observers outside that group (O’Leary & Kent, 
1973). Group drift is especially concerning when the same 
measurement instrument is used by multiple research 
groups, as it can prevent meaningful comparison between 
studies. Researchers can detect drift by periodically com-
paring observers’ measurements to external measurements 
that are accepted as “correct.” However, this solution is 
rarely used due to the difficulty of collecting (and the rela-
tive absence of) accepted measurements. Drift may also be 
exacerbated in group-specific (i.e., unshared) databases, 
which would not be detected by this approach. Instead, 
researchers sometimes detect drift from an initial baseline 
by having observers assign measurements to the same items 
over the course of time. Using these data, intraobserver reli-
ability analyses can be performed to reveal changes in 
observers’ responses over time. However, without accepted 
measurements to compare with, it can be difficult to deter-
mine whether such changes are due to drift or whether the 
newer measurements are actually more accurate than the 
older ones.

Reactivity can be thought of as a specific case of the 
Hawthorne effect (Adair, 1984; Boice, 1983). It occurs 
when observers modify their response processes when they 
know they are being evaluated. Reactivity is a serious chal-
lenge when collecting evidence of validity based on 
response processes and reliability analyses. If observers 
use different response processes when they are being 
overtly and covertly evaluated, then evidence of validity 
based on their overtly measured response processes may 
not pertain to any measurements collected in the absence of 
overt evaluation. Similarly, if observers are more reliable 
during overt than covert evaluation, as previous research 
has found (Reid, 1970), then evidence of validity based on 
overt reliability analyses may not pertain to any measure-
ments collected in the absence of overt evaluation. If 
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reactivity is suspected, then researchers can devise covert 
means of assessing response processes and reliability. As a 
general rule, it seems worthwhile to keep observers blind 
to the items that will be included in reliability and response 
process analyses when possible. Furthermore, we recom-
mend the use of frequent “observer meetings” where mea-
surements are randomly selected from each observer to be 
viewed and discussed by the group. These meetings serve a 
didactic function and encourage observers to remain con-
sistent in their response processes given that any of their 
measurements may be evaluated. Researchers must take 
care not to encourage group drift during such meetings 
however.

Interobserver reliability is an important source of valid-
ity evidence in observational measurement. However, 
researchers currently face several challenges pertaining to 
its use. First, a wide range of reliability indexes are used by 
different researchers and by different fields. This heteroge-
neity creates confusion and, in studies where a reliability 
index is the dependent variable, makes comparison between 
studies difficult or impossible. Second, reliability indexes 
are commonly applied and reported incorrectly (Feng, 
2013b). These mistakes are understandable given the num-
ber of different options available, but are very problematic 
from a validity perspective. Third, although numerous crite-
ria have been proposed (see Gwet, 2014, pp. 166-168), 
there is no agreed-on criterion for what constitutes an 
“acceptable” reliability score. For example, Fleiss (1981) 
suggested that chance-adjusted reliability scores above 0.40 
are “intermediate to good” and scores above 0.75 are 
“excellent.” However, there is little consensus on such cri-
teria and many researchers (e.g., Bakeman & Quera, 2011) 
have challenged the notion that any criteria could be univer-
sally applicable. This issue is complicated and deserves 
more attention. Finally, as mentioned previously, existing 
approaches to estimating reliability with categorical instru-
ments are problematic. New categorical reliability indexes 
and widely adopted standards for their use, reporting, and 
evaluation are sorely needed.

Perhaps the most limiting challenge faced by observa-
tional researchers to date has been the sheer cost of training 
observers and collecting measurements. As an exemplar, 
training in FACS takes several months and coding a single 
minute of video with FACS can require an hour or more of 
observer time (Cohn & Ekman, 2005). While these estimates 
are likely greater than what is required for many measure-
ment instruments, the temporal and financial burden of 
observational measurement is a serious obstacle. Crucially, 
this burden often imposes limits on the number of partici-
pants that can be included in an observational study, reducing 
its statistical power and generalizability. While no easy solu-
tion to this problem exists, advances in computer-assisted 
and fully automated measurement help mitigate its impact. 
The next section describes these and other recent advances.

Recent Advances

Computer-Assisted Measurement

The tools for recording observational measurements have 
greatly advanced in recent years. Early observers recorded 
measurements using paper-and-pencil forms that were typi-
cally organized as grids with time intervals represented as 
rows and behavioral categories or dimensions represented 
as columns, or vice versa (Bakeman & Quera, 2011). This 
intuitive and parsimonious grid-based format has been pre-
served in many of the more recent tools.

However, researchers have increasingly adopted com-
puterized alternatives to paper-and-pencil forms. The ben-
efits of computer-assisted measurement generally include 
increased ease of use, efficiency, and temporal accuracy. 
Nowadays, observers typically assign measurements to 
audiovisual records of participant behavior. This approach 
restricts observers to the information captured on the record 
(e.g., behavior occurring off camera would not be visible), 
but offers substantial benefits in exchange. Recordings 
enable multiple observers to view identical information, 
even if they are separated in time and space. Using com-
puter-assisted measurement tools, observers can easily con-
trol playback of the record: playing it at various speeds, 
rewinding it, and pausing it when necessary. Well-designed 
tools also synchronize playback and the recording of mea-
surements automatically, thereby increasing temporal accu-
racy and reducing clerical errors.

One relatively recent advance that bears mentioning is 
the development of continuous measurement systems. 
Inspired by Gottman and Levenson’s (1985) affect rating 
dial, these systems collect dimensional measurements con-
tinuously (i.e., with very short time-intervals) as observers 
view audiovisual records in real time. Observers typically 
adjust the numerical value of their measurements by manip-
ulating a physical input device such as a dial, lever, or joy-
stick. The primary benefits of such tools are their efficiency 
(e.g., 1 minute of video only requires 1 minute to measure) 
and that the distributions of such measurements tend to be 
far less skewed than those from most categorical coding 
systems. Such tools have been used to great effect in the 
study of affective and interpersonal processes (e.g., Baker, 
Haltigan, Brewster, Jaccard, & Messinger, 2010; Cowie, 
McKeown, & Douglas-Cowie, 2012; Lizdek, Sadler, 
Woody, Ethier, & Malet, 2012).

General purpose computer-assisted measurement systems 
are now widely available in both commercial and freeware 
models. Popular commercial tools include Noldus’ The 
Observer and Mangold’s INTERACT, while popular freeware 
tools include ELAN and ANVIL. More specialized software 
is also available that excels at certain tasks. For instance, the 
freely available ChronoViz was designed to enable easy syn-
chronization and visualization of multiple data types includ-
ing audio, video, digital pen, and geolocation data. For 
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continuous measurement, one of the current authors devel-
oped two open source software packages: CARMA for mea-
suring a single dimension and DARMA for measuring two 
dimensions simultaneously (Girard, 2014). These latter sys-
tems also include powerful options for analyzing interob-
server reliability both quantitatively and qualitatively.

Fully Automated Measurement

Recent advances in computer science have yielded algo-
rithms capable of performing certain observational mea-
surement tasks without human intervention. While the 
majority of this work has focused on automatic detection of 
facial expressions, a growing body of literature is exploring 
fully automated measurement of other behavioral con-
structs, such as emotional and cognitive states, physical 
pain, and depression (for a review, see Cohn & De la Torre, 
2014). Given the considerable cost of collecting observa-
tional measurements, fully automated measurement could 
represent an enormous increase in research efficiency. And 
with their promise of nearly infinite scalability and real-
time analysis speeds, such tools also have the potential to 
open up entirely new avenues of research and application.

Although numerous approaches exist for fully automated 
measurement, most researchers have converged on the 
same basic structure of analysis. In this structure, an algo-
rithm is trained using two types of information. First, trusted 
human observers provide categorical or dimensional mea-
surements on a subset of items. Second, quantitative mea-
surements of these items, called features, are extracted 
using computer vision and signal-processing techniques. 
The algorithm then attempts to learn a high-dimensional 
mapping between the features and the trusted measure-
ments. For example, an algorithm might learn that items 
categorized as “smiles” tend to have certain combinations 
of features, while items categorized as “nonsmiles” tend to 
have different combinations. This learned mapping can then 
be used (i.e., extrapolated from) to generate predicted mea-
surements for novel items.

While the majority of work on fully automated measure-
ment has focused on visual sign-based instruments like 
FACS, subsets of work have focused on training algorithms 
to make message-based predictions (Gunes & Schuller, 
2013) and to integrate features from multiple behavioral 
modalities (e.g., face, posture, and speech; Dibeklioglu, 
Hammal, Yang, & Cohn, 2015; Pantic & Rothkrantz, 2003). 
As message-based measurements are highly inferential and 
sensitive to context, it may be hard to imagine how an algo-
rithm could perform this type of task (cf. Bakeman & Quera, 
2011, pp. 20-21). However, as the field of computational 
behavioral science matures, its ability to measure such con-
textual information increases. Armed with such rich informa-
tion, we believe that researchers will continue to close the 
gap between fully automated and human observers over time.

One of the exciting benefits of fully automated measure-
ment is that algorithms are immune to drift and reactivity. 
They do not become fatigued, distracted, or self-conscious; 
once trained, they do not change their minds. However, this 
blessing can become a curse when its implications are not 
fully appreciated. Because current algorithms typically do 
not continue to learn over time, they are entirely dependent 
on their initial training.

Girard, Cohn, Jeni, Sayette, and De la Torre (2015) dem-
onstrated that, when provided reliable and representative 
training data, current algorithms are able to perform well on 
even difficult observational tasks such as fully automated 
FACS coding of an unstructured social interaction. 
However, they also found that algorithms, like human 
observers, have a range of dependability beyond which 
their accuracy degrades. Specifically, they found that the 
accuracy of their algorithm was significantly degraded by 
extreme head pose (i.e., by participants turning away from 
the camera). It is thus imperative for researchers who 
develop or purchase fully automated measurement tools to 
gather evidence of validity using their own data sets.

Statistical Analysis

Analyzing the data from an observational study is relatively 
straightforward when measurements are assigned to a small 
number of time intervals per participant. Things become 
more complex, however, when behavioral events or a large 
number of time intervals are used. One common approach 
is to pool repeated measurements from each participant into 
summary scores such as the mean of each behavioral dimen-
sion or the proportion of items assigned to each behavioral 
category. Groups of participants (or conditions) can then be 
compared using mean summary scores. For example, Girard 
et al. (2014) compared depressed participants before and 
after treatment on the amount of time they contracted differ-
ent facial muscles during a clinical interview. While this 
type of approach is simple and intuitive, a number of more 
sophisticated methods for statistical analysis have been 
developed and applied to observational data in recent years. 
Several notable methods are multilevel modeling, sequen-
tial analysis, and dynamic systems analysis.

Multilevel modeling (e.g., Kreft & de Leeuw, 1998; 
Raudenbush & Bryk, 2002) enables researchers to account 
for and ask research questions about the hierarchical struc-
ture of “nested data.” A hierarchy consists of lower level 
observations nested within one or more higher levels. 
Examples include students nested within classrooms and 
workers nested within departments; these classrooms and 
departments may, in turn, be nested within schools and within 
corporations. Hierarchies are very common in observational 
data and this structure must be taken into account if analyses 
are to be accurate; of particular importance here is the nesting 
of repeated measurements within individual participants. For 

 at UNIV OF PITTSBURGH on March 2, 2016asm.sagepub.comDownloaded from 

http://asm.sagepub.com/


8	 Assessment ﻿

example, Girard et al. (2015) used multilevel models nesting 
video frames within participants to examine the influence of 
frame-level (i.e., illumination and head pose) and participant-
level (i.e., gender and ethnicity) variables on the accuracy of 
a fully automated facial expression analysis system.

Sequential analysis (Bakeman & Quera, 2011) enables 
researchers to ask questions about the temporal ordering 
and contingent relationships between behavioral catego-
ries. Importantly, these behavioral sequences may occur 
within or between individuals. As an early example, 
Bakeman and Brownlee (1980) found that children tended 
to transition from parallel activity to group play at rates 
greater than would be expected by chance, suggesting that 
children “size up” potential playmates before committing 
to group play. More recently, Knobloch-Fedders et al. 
(2014) examined behavioral sequences between romantic 
partners, finding that relationship quality was negatively 
associated with sequences of demanding behavior from 
one partner being met with either withdrawing or submis-
sive behavior from the other partner. These important rela-
tionships between behaviors would have been missed by 
nonsequential analyses.

Finally, dynamic systems analyses (Salvatore & 
Tschacher, 2012) enable researchers to ask questions about 
the relationship of a behavioral process to time; these 
include analyses of periodicity (i.e., repeating cycles), non-
linear change over time, deterministic chaos (i.e., quasiperi-
odic cycles), and self-organization. Of particular interest in 
observational measurement are the “attractor states” that a 
dynamic behavioral system tends to return to when per-
turbed and the “phase transitions” that it goes through when 
reorganizing. Examples of dynamic systems analyses 
involving observation of one and two individuals are pro-
vided for illustration. Hayes and Yasinski (2015) found that 
more variability in patients’ thoughts, behaviors, emotions, 
and somatic functioning in the later phase of cognitive ther-
apy for personality disorders predicted more symptom 
reduction at termination, suggesting that destabilization of 
old patterns may be necessary for new, healthier patterns to 
develop. Ramseyer and Tschacher (2011) used dynamic 
systems analyses to model the nonverbal interaction of 
patients and psychotherapists as a self-organizing system 
characterized by the emergence of body movement syn-
chrony; overall, they found that more synchrony predicted 
higher relationship quality and symptom reduction.

Future Directions

We are entering an exciting new era of behavioral science in 
which computer-assisted and fully automated measurement 
tools are beginning to yield unprecedented increases in the 
efficiency and scalability of observational measurement. 
We would like to highlight several research directions that 
are particularly important to pursue in this new era.

First, observational researchers can improve the rigor 
and comprehensiveness of their validation methods by 
reaching beyond interobserver reliability. Although interob-
server reliability is an important source of validity evidence, 
it is by no means sufficient. Evidence from content, response 
processes, and hypothesized relationships among variables 
is sorely needed. In particular, observational researchers 
can begin by demonstrating that their observational mea-
surements of a given construct are related to accepted mea-
sures of similar constructs and are unrelated to accepted 
measures of distinct constructs. Ongoing validation is espe-
cially important for fully automated measurement tools, 
which may have a restricted range of dependability based 
on their training data.

Second, observational researchers can help standardize 
the use of popular measurement instruments and detect 
group drift by increasing the sharing and comparing of 
observational data (i.e., audiovisual records and measure-
ments) across research groups. The facial expression analy-
sis community has advanced several relevant practices that 
are worth replicating in other areas of observational 
research. One is the “certification test” (e.g., the FACS 
Final Test; Ekman & Friesen, 1978), which provides a stan-
dardized set of observational data for trainees to demon-
strate their proficiency on. Another is the “community 
challenge” (e.g., the FERA Challenge; Valstar et al., 2015), 
which provides a standardized set of observational data for 
researchers to use in comparing the performance of their 
fully automated measurement tools.

Third, observational researchers can continue to improve 
fully automated measurement tools by increasing their 
range of dependability and leveraging contextual and multi-
modal information. Of particular importance is for research-
ers to demonstrate that a given algorithm can maintain its 
accuracy when applied to data sets very different from the 
one(s) it was trained on. Researchers can also use these 
tools to push the envelope of what’s possible in observa-
tional research. For instance, algorithms may be capable of 
quantifying subtle changes in behaviors that human observ-
ers struggle with, such as the amplitude and velocity of 
motion. In the facial expression analysis literature, such 
properties have already demonstrated utility in differentiat-
ing different types of smiles (Ambadar, Cohn, & Reed, 
2009; Schmidt, Ambadar, Cohn, & Reed, 2006) and differ-
ent mental health states (Juckel et al., 2008; Mergl, 
Mavrogiorgou, Hegerl, & Juckel, 2005). Hybrid tools that 
automate some but not all aspects of observational mea-
surement are another promising avenue of research (e.g., 
De la Torre, Simon, Ambadar, & Cohn, 2011).

Finally, more research is needed to explore how specific 
behavioral signs (e.g., muscle movements, vocal qualities, 
and body/hand gestures) relate to intended and interpreted 
behavioral messages (e.g., affective and cognitive states). 
Of particular importance is establishing the specificity and 
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generality of any identified relationships (Cacioppo & 
Tassinary, 1990). Research on how signs are interpreted by 
observers can be an excellent starting place, but studies of 
when (and why) signs are produced by participants are also 
necessary. Only through diligent measurement and careful 
examination of well-designed observational data can we 
decode the complex world of meaning contained in 
behavior.
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Note

1.	 Since 1954, the S index has been reinvented many times and 
given many different names. For the most detailed instruc-
tions on calculating it, see Gwet’s (2014) handbook, where it 
is denoted both κ

BP
 and κ

Q
.
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